ORACLE"

Oracle® Database

2 Day + Java Developer's Guide
12c Release 2 (12.2)
E50116-09

May 2017

Oracle Database 2 Day + Java Developer's Guide, 12¢ Release 2 (12.2)
E50116-09

Copyright © 2007, 2017, Oracle and/or its affiliates. All rights reserved.
Primary Author: Tanmay Choudhury

Contributing Authors: Tulika Das, Maitreyee Chaliha, Deepa Aswani, Rosslynne Hefferan Kathleen Heap,
Simon Law

Contributors: Kuassi Mensah, Chris Schalk, Christian Bauwens, Mark Townsend, Paul Lo,
Venkatasubramaniam Iyer, Yuri Dolgov

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIACE ...ttt Xiii
BN o <) Vel <IN xiii
Documentation AcCeSSIDILILYcccvviiimiiiiiiiiiiiiiiiic e Xiii
J RS F=RTe B D)ool b0 s 1<) o X 1< TR Xiii
(@03 0 M7= 110) 1= J0UTRT RO ORRRRRR Xiv

1 Using Java with Oracle Database

1.1 Using Java to Connect to Oracle Database 12c Release 2 (12.2)cccccevuvivvvinvnnnnnninenenes 1-1
1.1.1 Oracle JDBC Thin DIiVer......ccooioiiiiieieieiieeeeetese ettt ettt s 1-1
1.1.2 Oracle JDBC PaCKaGESccceuiiiuiirieiiicieieci i 1-2

1.2 Using JDeveloper to Create JDBC APpPLiCations..........ccovvererererererererernenrirreereesseeeeeeeeeeeens 1-2
1.2.1 JDeveloper User INterfaceccccociiiiiiiiiiiiiiiiiiiiiciicccceeeeeeenee e 1-3
1.2.2 JDeVElOPET TOOLSc.ououimiiiiiiiiiiiiiiicic e 1-4

1.3 Overview of Sample Java APPLiCationccovoiiuiieiiiiciicc e 1-4

1.4 RESOUICES ...ttt ettt a e 1-7

2 Getting Started with the Application

2.1 What You Need to INstallcccoevviiiiiiiiiiiiiiisnns 2-1
2.1.1 Oracle Database 12¢ Release 2 (12.2) ..ccvecveeieieeeirieieesiesresresiessesesessessesesssesessessessessessenes 2-1
2.1.2 J2SE OF JDK ..ttt 2-2
2.1.3 Integrated Development ENvironment ..o 2-3
214 WED SEIVET ...ttt 2-3

2.2 Verifying the Oracle Database 12c Release 2 (12.2) Installationcccccevivvviniiinnnnnnn 2-3
2.2.1 Checking Installed Directories and Files ..., 2-3
2.2.2 Checking the Environment Variables............cccoiiiiiiiiiiiiiiiccce, 2-4
2.2.3 Determining the JDBC Driver Version........ccoooeoieiiciciiiiicieeccie e 2-4

2.3 Installing Oracle JDeVelOPETcccceuiiiiiieiiiicie e 2-5

3 Connecting to Oracle Database 12c Release 2 (12.2)

3.1 Connecting to Oracle Database from JDeveloperccccocooreiiiiieiieiece 3-1
3.1.1 JDeveloper Database Navigator...........ccoiiiiiiiiiiiiiiiccceeeeecee e 3-1
3.1.2 Creating a Database CONNECtiONccccciiiiiiiiiiic e 3-2

3.2

3.3

3.1.3 Browsing the Data Using the Database Navigator...........cccccoooiriiiiiiiiniiicc, 3-3

Setting Up Applications and Projects in JDeveloper ... 3-4
3.2.1 Using the JDeveloper Application Navigator ..., 3-5
3.2.2 Creating an Application and a Project ..., 3-5
3.2.3 Viewing the Javadoc and Source Code Available in the Project Scope 3-5
Connecting to Oracle Database from a Java Applicationcccccevivviiininiiiniicn, 3-6
3.3.1 Overview of Connecting to Oracle Database.............ccccccocoiiiiiiiiniiniiiicccceee. 3-6
3.3.2 Specifying Database URLS ... 3-7
3.3.3 Creating a Java Class in JDeVelOPer ..o 3-9
3.3.4 JAVA LIDTATIES...c.eiuieiieiieiieieetetee ettt sttt ettt ettt et eae s 3-10
3.3.5 Adding JDBC and JSP Libraries.........ccccoviiiiiiiiiiiicccccnens 3-11
3.3.6 Importing JDBC Packages..........ccccciiiiiiiiiiiiiiiiciciicccce s 3-12
3.3.7 Declaring Connection-Related Variables.............cccooiiiiiiiiiiiiine, 3-12
3.3.8 Creating the Connection Method..........cccouiiiiiiiiiii 3-13

4 Querying for and Displaying Data

41

4.2

4.3

44

4.5

4.6

Overview of Querying for Data in Oracle Databasecccocoooviiiiiiiiiii, 4-1
4.1.1 SQL StateImMENES.....ccvevieeieieeierieeierte ettt et e teete e ebesteessesreessesseessesseessesssessesssessesssesseessassenns 4-2
4.1.2 Query Methods for the Statement ODbJectccccceiiiiiiiiiiiiirccctccceeeeeeee 4-2
4.1.3 RESUIE SEtS.....ouiveviiiiiieiicie e 4-3
Querying Data from a Java Application...........ccccccviiiiiiiiiiiiiic s 4-4
4.2.1 Creating a Method in JDeveloper to Query Datac.c.cooooriiiiiiiiii 4-4
4.2.2 Testing the Connection and the Query Methods...........ccoooiiiiiii, 4-5
Creating JSP Pages........ccooiiiiiiiiiiiiiii s 4-7
4.3.1 Overview of Page Presentationccoiiiiiiiiiiiiiicciiccccccccccceens 4-8
4.3.2 Creating a Simple JSP Page........cccccoiiiiiiiiiiiiiiicccs 4-9
4.3.3 Adding Static Content to a JSP Pagecccceueirriiiiiiicieiiccec 4-10
4.3.4 Adding a Style Sheet to a JSP Page.......cccccouoiiiieieiiiiicc 4-12
Adding Dynamic Content to the JSP Page: Database Query Resultscccccceeuverrcnnnne 4-14
441 Adding aJSP useBean Tag to Initialize the DataHandler Class..........c.cccceeeveiiinnnnee. 4-14
4.4.2 Creating a Result Set ..o 4-15
4.4.3 Adding a Table to the JSP Page to Display the Result Set...........ccccccooriii 4-17
Filtering a Query Result Setcoviiiriiiii 4-19
45.1 Creating a Java Method for Filtering Results..........cccoooiviiiiinnnnieene, 4-19
4.5.2 Testing the Query Filter Method...........cccooooiiiiiiiiiiii, 4-20
4.5.3 Adding Filter Controls to the JSP Pagecccooouiiriiiiiiiicc 4-21
4.5.4 Displaying Filtered Data in the JSP Page.........cccccoooiiiiiii 4-22
Adding Login Functionality to the Application...........ccocoeovvviiiiiiiiii, 4-23
4.6.1 Creating a Method to Authenticate USers ... 4-23
4.6.2 Creating a Login Page.........ccccocoeiiiiiiiiiiiiiiiccc s 4-25
4.6.3 Preparing Error Reports for Failed LOGINscccoovoiiiiiiiiiiic 4-26
4.6.4 Creating the Login Interfacecccoooeioiiiiiniiiiiiiicc e 4-27
4.6.5 Creating a JSP Page to Handle Login AcCtionccccccciiiiiiiiiniincncieecceeeenee 4-28

4.7 Testing the JSP Pageccoouiiiiiiicc 4-29

Updating Data

5.1 Creating a JavaBean...........ccocoiiiiiiii e 5-1
5.1.1 Creating a JavaBean in JDeVEIOPET ... 5-1
5.1.2 Defining the JavaBean Properties and Methods...........cccccooviiriiiiiiincne, 5-2

5.2 Updating Data from a Java Classcccccevviiiiiiiiiiniiiiiinisssss 5-4
5.2.1 Creating a Method to Identify an Employee Recordcoooeiiiiiiniiiiii, 5-5
5.2.2 Creating a Method to Update Employee Data............cccooorueiiiiiniiiiiiiccce, 5-6
5.2.3 Adding a Link to Navigate to an Update Page..........ccccccceoiiiiiiinniiiiccicceae. 5-8
5.2.4 Creating a JSP Page to Edit Employee Dataccccooiiiiiiiininiiccccne, 5-10
5.2.5 Creating a JSP Page to Handle an Update Action..........ccooeeiiiiiiininnniine, 5-12

5.3 Inserting an Employee Record...........ooiiiiiiiiii 5-13
5.3.1 Creating a Method to Insert Data.........c.cccoeviiiniiniiiiice 5-14
5.3.2 Adding a Link to Navigate to an Insert Page...........cccoooiiiniiiinnnnninccene, 5-15
5.3.3 Creating a JSP Page to Enter New Data ..o, 5-15
5.3.4 Creating a JSP Page to Handle an Insert Action...........c.coooomeieiiiiiiiiiiiccicccc 5-17

5.4 Deleting an Employee Record...........coeriiiiiiiiiiiiiii s 5-18
5.4.1 Creating a Method for Deleting Dataccccocooiiiiiiiiiiiiciceeceeeee e 5-19
5.4.2 Adding a Link to Delete an EMpPIOYee. ..., 5-20
5.4.3 Creating a JSP Page to Handle a Delete ACtiONcccoovirmiiiiiiciiiiccc 5-20

5.5 Exception Handling ... e 5-21
5.5.1 Adding Exception Handling to Java Methods..........cccooiiiiiiiii 5-21
5.5.2 Creating a Method for Handling Any SQLEXCEPHON. ..o, 5-22

5.6 Navigation in the Sample APPLCAtiONccccoueuiiiiriiiririiiiiiiicccc s 5-23
5.6.1 Creating a Starting Page for an Application...........ccccoceiiiviiiiiiinnnine, 5-23

Enhancing the Application: Advanced JDBC Features

6.1 Using Dynamic SQLccooiiiiiiiiiiiicetc et 6-1
6.1.1 Using OraclePreparedStatement.............ccooooeiiiiiiiiiiiiiii 6-1
6.1.2 Using OracleCallableStatement..............coooiiiiiiiiiiiii 6-2
6.1.3 Using Bind Variablescccovviiiiiiiiiierecce s 6-2

6.2 Calling Stored ProCedUIES...........cccceuvuriviiiiiiiiiiiiiiiiicicirrs s 6-3
6.2.1 Creating a PL/SQL Stored Procedure in JDeveloper............ccccooeviiiiinininicnieiiccnen, 6-4
6.2.2 Creating a Method to Use the Stored Procedure..........cccouoiiieiiiiiiiiiic, 6-5
6.2.3 Enabling Users to Choose the Stored Procedure............cccccoimiviiinnininii, 6-7
6.2.4 Calling the Stored Procedure from the Application...........cccccevuvivrrnvvrrnnnnnrene 6-8

6.3 Using Cursor Variables...........ccccociiiiiiiiiiiininiiiiiiss s 6-9
6.3.1 Oracle REF CURSOR Type Categoryccoeeuiiirieieieiicieieiecicie i 6-10
6.3.2 Accessing REF CURSOR Data........ccoceuiiiirieiiiiciciccci 6-10
6.3.3 Using REF CURSOR in the Sample Applicationcccccevevevevererirrrnencrrnceeene 6-11

7 Getting Unconnected from Oracle Database 12c Release 2 (12.2)

7.1 Creating a Method to Close All Open ODbjectsccoooueuiiiiiiiiiiiecec 7-1
7.2 Closing Open Objects in the Application..........cccocovviiviniiiiininiii 7-2

8 Creating a Universal Connection Pool

8.1 Setting JDeveloper Project Properties..........cccovveiiiiiniiiiiiiiiicccicccccccccs 8-1
8.2 Creating the Stock Ticker APPLCAtION........ccovueuiiiiiiiiririiiiiirrcccr s 8-3
8.3 Observing the OULPULcccvvviiiiiiiiiiic s 8-6
9 Building Global Applications
9.1 Developing Locale AWATENESS.........ccccouvuriiiriririniiiiiiiiiniiiiiieessstees st 9-1
9.1.1 Mapping Between Oracle and Java Localescccooiiiiiiiiiiiiicc, 9-3
9.2 Determining User LOCAlesccoouoviiiiiiiiiii e 9-3
9.2.1 Locale Awareness in Java AppLiCatioNS ...t 9-3
9.3 Encoding HTML Pagesccccovuiiiiiiriririiiiicircieiecieeeceee e 9-4
9.3.1 Specifying the Page Encoding for HTML Pages..........cccooviiiiiiiiiiiiiiccae, 9-4
9.3.2 Specifying the Page Encoding in Java Servlets and JSP Pagesc.cccccooviiiiinnnnnn. 9-5
9.4 Organizing the Content of HTML Pages for Translationccooeevvieiieiiecincice 9-5
9.4.1 Strings in Java Servlets and JSP Pages.........ccccccoieiiiiiiiiiiiiiiccccceccccceeeene 9-6
9.4.2 StatiC FIleS ...ovuiviiiciiii e 9-6
9.4.3 Data from the Databasecccccovviiuiiiiiiiiiiiiiicic e 9-6
9.5 Presenting Data by User Locale CONVeNtioncccceuiimiiieiiicieieiccecci s 9-6
9.5.1 Oracle Date FOrmats ..o 9-7
9.5.2 Oracle Number FOrmats ..o 9-8
9.5.3 Oracle LINGUIStIC SOTES.......cciuimimiiiiiiiiiiiiiiiicccccc e 9-9
9.5.4 Oracle Error MESSAZESccvuimimimimiiiiiiiiiiiiiiiiicc s 9-9
9.6 Localizing Text on JSP Pages in JDevelopercccccooiriiiiiiicicieccc e 9-10
9.6.1 Creating a Resource Bundle............ccooooiiiiiiiiiii 9-11
9.6.2 Using Resource Bundle Text on JSP Pages ..., 9-12
Index

Vi

List of Tables

2-1 Directories and Files in the ORACLE_HOME Directory.........c.cccoovivnninininnninninnninnns 2-3
3-1 Standard Data Source Properties............occcuiiiiiiiiiniciccc e 3-7
4-1 Key Query Execution Methods for java.sql.Statement.............cccooeveveiiiiiiniiie, 4-2
9-1 Locale Representation in Java, SQL, and PL/SQL Programming Environments.............. 9-2

Vii

viii

List of Tables

2-1 Directories and Files in the ORACLE_HOME Directory.........c.cccoovivnninininnninninnninnns 2-3
3-1 Standard Data Source Properties............occcuiiiiiiiiiniciccc e 3-7
4-1 Key Query Execution Methods for java.sql.Statement.............cccooeveveiiiiiiniiie, 4-2
9-1 Locale Representation in Java, SQL, and PL/SQL Programming Environments.............. 9-2

List of Tables

2-1 Directories and Files in the ORACLE_HOME Directory.........c.cccoovivnninininnninninnninnns 2-3
3-1 Standard Data Source Properties............occcuiiiiiiiiiniciccc e 3-7
4-1 Key Query Execution Methods for java.sql.Statement.............cccooeveveiiiiiiniiie, 4-2
9-1 Locale Representation in Java, SQL, and PL/SQL Programming Environments.............. 9-2

Xi

Xii

Preface

This Preface introduces you to Oracle Database 2 Day + Java Developer’s Guide, by
discussing the intended audience and conventions of this document. It also includes a
list of related Oracle documents that you can refer to for more information.

Audience

This guide is intended for application developers using Java to access and modify data
in Oracle Database. This guide illustrates how to perform these tasks using a simple
Java Database Connectivity (JDBC) application. This guide uses the Oracle JDeveloper
integrated development environment (IDE) to create the application. This guide can be
read by anyone with an interest in Java programming, but it assumes at least some
prior knowledge of the following;:

e Java
e Oracle PL/SQL

e Oracle databases

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: / / www. or acl e. coni pl s/t opi ¢/ | ookup?
ct x=accé&i d=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visitht t p: / / ww. or acl e. coni pl s/t opi ¢/ | ookup?

ct x=acc& d=i nf o orvisithtt p: / / www. or acl e. cont pl s/t opi c/| ookup?
ct x=accé& d=t r s if you are hearing impaired.

Related Documents

For more information, see the following documents in the Oracle Database
documentation set:

® Oracle Database JDBC Developer's Guide
® Oracle Database Java Developer’s Guide

® Oracle Universal Connection Pool for JDBC Developer’s Guide

Xiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Xiv

Conventions

The following text conventions are used in this document:

Convention

Meaning

boldface

italic

nonospace

Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Using Java with Oracle Database

Oracle Database is a relational database that you can use to store, use, and modify
data. The Java Database Connectivity (JDBC) standard is used by Java applications to
access and manipulate data in relational databases.

JDBC is an industry-standard application programming interface (API) that lets you
access a RDBMS using SQL from Java. JDBC is based on the X/Open SQL Call Level
Interface (CLI) and complies with the Entry Level of the JDBC escape standard. Each
vendor implements the JDBC Specification with its own extensions.

Universal Connection Pool (UCP) is a connection pool used to cache the database
connection objects to reuse the connections, thus improving the performance.

Java in the Database (OJVM) helps group SQL operations with Java data logic and
load them into the database for in-place processing.

This chapter introduces you to the JDBC driver, Universal Connection Pool (UCP) and
Java in the Database (OJVM) with Oracle Database 12c Release 2 (12.2)

* Java Database Connectivity Driver
® Universal Connection Pool

e Java in the Database (OJVM)

1.1 Using Java to Connect to Oracle Database 12¢ Release 2 (12.2)

JDBC is a database access protocol that enables you connect to a database and run SQL
statements and queries on the database. The core Java class libraries provide the JDBC
APIs, j ava. sql andj avax. sql . However, JDBC is designed to allow vendors to
supply drivers that offer the necessary specialization for a particular database.

Note:

Oracle Database 12c Release 2 (12.2) supports JDK 8.

The following sections describe Oracle support for the JDBC standard:
® Oracle JDBC Thin Driver (page 1-1)

¢ Oracle JDBC Packages (page 1-2)

1.1.1 Oracle JDBC Thin Driver

Oracle recommends using the JDBC Thin Driver for most requirements. JDBC-OCI is
only needed for OCl-specific features. The Thin driver will work on any system that
has a suitable Java virtual machine (JVM).

Using Java with Oracle Database 1-1

Using JDeveloper to Create JDBC Applications

The JDBC Thin Driver is a pure Java, Type IV driver. It is platform-independent and
does not require any additional Oracle software for client-side application
development. The JDBC Thin Driver communicates with the server using SQL*Net to
access Oracle Database 12¢ Release 2 (12.2).

You can access the Oracle-specific JDBC features and the standard features by using
the or acl e. j dbc package.

1.1.2 Oracle JDBC Packages

Oracle support for the JDBC APl is provided through the or acl e. sgl and
or acl e. j dbc packages. These packages support all Java Development Kit (JDK)
releases from JDK 5 till JDK 8.

oracle.sql

The or acl e. sql package supports direct access to data in SQL format. This package
consists primarily of classes that provide Java mappings to SQL data types and their
support classes. Essentially, the classes act as Java wrappers for SQL data. The
characters are converted to Java char s and, then, to bytes in the UCS-2 character
set.Each of the or acl e. sqgl . * data type classes extends or acl e. sql . Dat um a
superclass that includes functions and features common to all the data types. Some of
the classes are for JDBC 2.0-compliant data types. In addition to data type classes, the
or acl e. sql package supports classes and interfaces for use with objects and
collections.

oracle.jdbc

The interfaces of the or acl e. j dbc package define the Oracle extensions to the
interfaces in the j ava. sql package. These extensions provide access to Oracle SQL-
format data. They also provide access to other Oracle-specific features, including
Oracle performance enhancements.

The key classes and interfaces of this package provide methods that support standard
JDBC features and perform tasks such as:

e Returning Oracle statement objects

® Setting Oracle performance extensions for any statement

e Binding or acl e. sqgl . * types into prepared and callable statements
* Retrieving data in or acl e. sql format

* Getting meta information about the database and result sets

* Defining integer constants used to identify SQL types

1.2 Using JDeveloper to Create JDBC Applications

The Java application tutorial in this guide uses Oracle JDeveloper release 11.1.1 as the
integrated development environment (IDE) for developing the Java application and
creating Web pages for users to view and change the data.

Oracle JDeveloper is an IDE with support for modeling, developing, debugging,
optimizing, and deploying Java applications and Web services.

JDeveloper provides features for you to write and test Java programs that access the
database with SQL statements embedded in Java programs. For the database,
JDeveloper provides functions and features to do the following:

1-2 Oracle Database 2 Day + Java Developer's Guide

Using JDeveloper to Create JDBC Applications

e (Create a connection to a database
* Browse database objects
* Create, edit, or delete database objects

® Create and edit PL/SQL functions, procedures, and packages

1.2.1 JDeveloper User Interface

Oracle JDeveloper is an IDE that uses windows for various application development
tools. You can display or hide any of the windows, and you can dock them or undock
them to create a desktop suited to your method of working.

In addition to these tools, JDeveloper provides a range of navigators to help you
organize and view the contents of your projects. Application and System navigators
show you the files in your projects, and a Structure window shows you the structure
of individual items.

You can arrange the windows as you choose, and can close and open them from the
View menu. Figure 1-1 (page 1-3) shows the default layout of some of the available
navigators, palettes, and work areas in the JDeveloper user interface (GUI).

Figure 1-1 JDeveloper User Interface

Orache Mevloper - HEAPp. bt : vhew. jpr @ C2\UDeve o per' pdeyimrpwarkNHRA p pwiewi\public_bmlemployess. fsp
Bl L& Yew Seawch Nevigats Bun Dsbug Ossgn Refpte vemgerg Ik Srdow e
G>8g O-0 o XEW fd A Jda- p- $-PASAENEE BP
gphcations Npvgator | Breenr pmonr Heetm @osswde e | Llengoreersp | HErset stonge @ 0 (2] @l conponent Pokeme .
w T) — - — | -
daTEmD Hel @ v [onfmit e r B OSFB IV EEEEE- D |Eos
® LI wen-p# - . N R Pomeer =
T delete_scren we AnyCo Corporation: HR Application . B tare
ﬂPln Employea Data (8 gy
Navigator .) |38
- = _ [Bisebean] | 4 Component
. Palette I
Al ke _ecton g Fa =
— Eugrassin
el - Filtar by Employes Name :"P.;_“
. Wia— +*
LI s et Navwster v B Formard
® @& E‘ Pesuts | | @ Geeropany =
. — = Euqm L Waarnir Emasl Job | Phose |Salary gt Emgrayes 4 a:é.“ [——— =
] Proxcedures H
:@m E o
Navigilor ! ’ © i ——
Navigatol =
I CEens)
Java Source Editor/ 1.2 1
Visual Editor Property
el Kigbycior
5 empicyen.sp - Srutue m Frame
Fudes
* 3 r—— L
= [[| prrereprere e -
el Himi» «body» <tables |, G0 o P Defetions
=BG | Con | Scaarce | Hstory |4]
= Eaw = =
= Eqw (resnaces - Log .
Ly L T A | ey L e A L S ik v A jan =
swh'i:f-‘llllm compiling C:\JDeveloper|jdevinpeerk\MBipp i riewiclasren) Jupe|_sdit_ amp. jers
= CORpRIANG €11 TDevelapen | eV Rreerh \ HEAPD | Wiew\ CIAN 60 . JIPE)_UpEste_ actiom, Jeve Runtime
. rg,,‘ 140:28: 29 MEl Puscesstul aoapilacisn: O suvens. 0 varmings Messages
=i
A ey -
Source | Deson Mesiages Pellurvang Enbedded OC4) Server e
£ Dewebigee Lo i kMR A viewel ol Melimplinees 10 Irdertneg inside Table Selected: Table g et Eateny
See Also:

Working with Windows in the IDE, in the JDeveloper online Help

Using Java with Oracle Database 1-3

Overview of Sample Java Application

1.2.2 JDeveloper Tools

For creating a Java application, JDeveloper provides the following tools to simplify the
process:

Structure window, which provides a tree view of all of the elements in the
application currently being edited be it Java, XML, or JSP/HTML.

Java Visual Editor, which you can use to assemble the elements of a user interface
quickly and easily.

JSP/HTML Visual Editor, which you can use to visually edit HTML and JSP
pages.

Java Source Editor, which provides extensive features for helping in writing the
Java code, such as distinctive highlighting for syntax and semantic errors,
assistance for adding and sorting import statements, the Java Code Insight
feature, and code templates.

Note:

The Java Code Insight feature is a facility that provides context-specific,
intelligent input when creating code in the Java Source Editor. In this guide,
you will see many instances of how you can use Java Code Insight to insert
code.

Component Palette, from which you select the user interface components, such as
buttons and text areas, that you want to display on your pages.

Property Inspector, which gives a simple way of setting properties of items such
as user interface components.

Refer to Figure 1-1 (page 1-3) to get a better idea of these tools.

1.3 Overview of Sample Java Application

This guide shows you how to create an application using Java, JDBC and Oracle ADF.
In this application, you build in functions and features that:

1.

2.

Allow users to log in and validate the user name and password.
Establish a connection to the database.

Query the database for data and retrieve the data using a JavaBean.
Display the data using JavaServer Pages (JSP) technology.

Allow users to insert, update, or delete records.

Access and modify information from a master-detail application.

Handle exceptions.

1-4 Oracle Database 2 Day + Java Developer's Guide

Overview of Sample Java Application

Note:

The application connects to the HR schema that ships with Oracle Database 12¢
Release 2 (12.2).

Overview of Application Web Pages (JSP Pages)

Figure 1-2 (page 1-5) shows the relationships among the pages developed for this
application.

Figure 1-2 Web Pages in the Sample Application

| indexjsp |

Y
[login.jsp } I-[login_action.jsp |

Y

.._l insert.jsp |—>—I insert_action.jsp I—p-

employees.jsp

Displays a table of employees.

"'| edit_emp.jsp l—-—lupdate_acﬁon.jspl—h

Contains :
+ a field for filtering the list of

employeas

* a link to add an employee — ’—F‘ delete_action.jsp I—h-

* links to edit employee rows —
* links to delete employee rows

A brief description of the Web pages in the sample application follows:

e index.jsp
This is the starting page of the application. It automatically forwards the user to
the login page of the application, | ogi n. j sp.

e Jlogin.jsp

This page allows users to log in to the application. The user name, password, and
host information are validated and used to create the connection descriptor to log
in to the database.

e login_action.jsp

This is a nonviewable page that handles the authentication of the user-supplied
login details from | ogi n. j sp. If authentication is successful, the page forwards
the user to enpl oyees. j sp. Otherwise, it redisplays the | ogi n. j sp page
including a message.

e enpl oyees.jsp

This is the main page of the application. It displays a list of all the employees in
the HR schema for AnyCo Corporation and allows the user to filter the list of

Using Java with Oracle Database 1-5

Overview of Sample Java Application

employees using any string. It also includes links to add, edit, and delete any user
data. These actions, however, are handled by other JSP pages that are created
specifically for each of these tasks.

insert.jsp

The link to insert employee data on the enpl oyees. j sp page redirects the user
to this page. This includes a form that accepts all the details for a new employee
record. The details entered on this form are processed by the

i nsert_action.jsp page.

insert_action.jsp

This is a nonviewable page that handles the insertion of data for a new employee
that is entered on the i nsert . j sp page.

edit.|sp

The link to edit employee data on the enpl oyees. j sp page redirects the user to
this page. This form displays current data of a single employee in text fields, and
the user can edit this information.

update_action.jsp

The submit action on the edi t . j sp page directs the data to this nonviewable
page, which inserts the edited data into the database.

del ete_action.jsp

The link to delete an employee record on the enpl oyees. j sp page is handled by
this nonviewable page, which deletes the employee data and forwards the user
back to the enpl oyees. j sp page.

Classes

The sample application includes the following classes:

Dat aHandl er . j ava

This class contains all the methods that are used to implement the important
functions of the sample application. It includes methods that validate user
credentials, connect to the database, retrieve employee data with and without
filters, insert data, update data, handle exceptions, and so on.

Enpl oyees. j ava

This class is a JavaBean that holds a single employee record. It contains access or
methods to get and set the values of each of the record fields. It also contains
accessor methods to retrieve and modify employee records.

Javadient.java

This class is used only for testing the Dat aHandl er class.

Note:

This application is developed throughout this guide in the form of a tutorial. It
is recommended, therefore, that you read these chapters in sequence.

1-6 Oracle Database 2 Day + Java Developer's Guide

Resources

1.4 Resources

For more information about Oracle Database 12¢ Release 2 (12.2):

¢ Visit the Oracle Database 12c Release 2 (12.2) Online Documentation Library by
performing the following steps:

— Click Start and then Programs.

— Select Oracle Database 12c Release 2 (12.2), then Get Help, and then Read
Documentation.

® Visit the Oracle Database 12cRelease 2 (12.2) Online Discussion forum by
performing the following steps:

— Click Start and then Programs.

— Select Oracle Database 12c Release 2 (12.2), then Get Help, and then Go To
Online Forum.

Using Java with Oracle Database 1-7

Resources

1-8 2 Day + Java Developer's Guide

2

Getting Started with the Application

To develop a Java application that connects to Oracle Database 12c Release 2 (12.2),
you must ensure that certain components are installed as required. This chapter covers
the following topics:

¢ What You Need to Install (page 2-1)
* Verifying the Oracle Database 12c Release 2 (12.2) Installation (page 2-3)

¢ Installing Oracle JDeveloper or any Java IDE (Eclipse, NetBeans, Intellij)

2.1 What You Need to Install

To be able to develop the sample application, you need to install the following
products and components:

® Oracle Database 12c Release 2 (12.2) (page 2-1)

J2SE or JDK (page 2-2)

Integrated Development Environment (page 2-3)

Web Server (page 2-3)

The following subsections describe these requirements in detail.

2.1.1 Oracle Database 12¢ Release 2 (12.2)

To develop the Java application, you need a working installation of Oracle Database
12¢ Release 2 (12.2) Server with the HR schema, which comes with the database. The
installation creates an instance of Oracle Database 12c Release 2 (12.2) and provides
additional tools for managing this database. For more information, refer to the
following Oracle Database 12c Release 2 (12.2) installation guides and release notes:

* Oracle Database Installation Guide for Linux
e Oracle Database Installation Guide for Microsoft Windows

2.1.1.1 Unlocking the HR Schema for the JDBC Application

The HR user account, which owns the sample HR schema used for the Java application
in this guide, is initially locked. You must log in as a user with administrative
privileges (SYS) and unlock the account before you can log in as HR

If the database is locally installed, use the Run SQL Command Line to unlock the
account as follows:

Getting Started with the Application 2-1

What You Need to Install

1. To access the Run SQL Command Line, from the Start menu, select Programs (or
All Programs), then Oracle Database 12¢ Release 2 (12.2), and then click Run SQL
Command Line. Log in as a user with DBA privileges, for example:

> CONNECT SYS AS SYSDBA;
Enter password: password

2. Run the following command:
> ALTER USER HR ACCOUNT UNLOCK;
or,
> ALTER USER HR | DENTI FI ED BY HR;
3. Test the connection as follows:

> CONNECT HR
Enter password: password

You should see a message indicating that you have connected to the database.

Note:

For information about creating and using secure passwords with Oracle
Database 12c Release 2 (12.2), refer to Oracle Database Security Guide.

In addition, some of the constraints and triggers present in the HR schema are not in
line with the scope of the Java application created in this guide. You must remove
these constraints and triggers as follows using the following SQL statements:

DROP TRI GGER HR. UPDATE_JCB_HI STCRY;
DROP TRI GGER HR. SECURE_EMPLOYEES;
DELETE FROM JOB_HI STCRY;

2.1.2 J2SE or JDK

To create and compile Java applications, you need the full Java 2 Platform, Standard
Edition, Software Development Kit (J2SE SDK), formerly known as the Java
Development Kit (JDK).

Note:
Oracle Database 12c Release 2 (12.2) supports JDK 8.

See Also:

e http://ww. oracl e.comtechnetwork/javaljavase/
downl oads/ i ndex. ht m for information about installing Java

e http://ww.oracle.conftechnetwork/javal
overvi ew 141217, ht Ml for information about the JDBC API

2-2 Oracle Database 2 Day + Java Developer's Guide

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/overview-141217.html
http://www.oracle.com/technetwork/java/overview-141217.html

Verifying the Oracle Database 12¢ Release 2 (12.2) Installation

2.1.3 Integrated Development Environment

For ease in developing the application, you can choose to develop your application in
an integrated development environment (IDE). This guide uses Oracle JDeveloper to

create the files for this application. For more information about installing JDeveloper,
refer to Installing Oracle JDeveloper (page 2-5).

2.1.4 Web Server

The sample application developed in this guide uses JavaServer Pages (JSP)
technology to display information and accept input from users. To deploy these pages,
you need a Web server with a servlet and JSP container, such as the Apache Tomcat
application server.

This guide uses the embedded server called the Oracle WebLogic Server in JDeveloper
for deploying the JSP pages. If you choose not to install Oracle JDeveloper, then any
Web server that enables you to deploy JSP pages should suffice.

For more information about these servers, please refer to vendor-specific
documentation.

2.2 Verifying the Oracle Database 12¢ Release 2 (12.2) Installation

Oracle Database 12c Release 2 (12.2) installation is platform-specific. You must verify
that the installation was successful before you proceed to create the sample
application. This section describes the steps for verifying an Oracle Database 12¢
Release 2 (12.2) installation.

Verifying a installation involves the following tasks:
® Checking Installed Directories and Files (page 2-3)
® Checking the Environment Variables (page 2-4)

® Determining the JDBC Driver Version (page 2-4)

2.2.1 Checking Installed Directories and Files

Check if the directories described in the following table have been created and
populated in the ORACLE_HOVE directory.

Table 2-1 Directories and Files in the ORACLE_HOME Directory
|

Directory Description

$OH jdbe/lib The | i b directory contains the oj dbc8. jar fileand
required Java classes. The ojdbc8 jar file contains the JDBC
driver classes for use with JDK 8.

$OH/ j dbc/ Readne. t xt This file contains late-breaking and release-specific information
about the drivers, which may not have been included in other
documentation on the product.

$OHjlib This directory contains the or ai 18n. j ar file. This file contains
classes for globalization and multibyte character sets support.

Getting Started with the Application 2-3

Verifying the Oracle Database 12¢ Release 2 (12.2) Installation

Note:

Use the oj dbcn. j ar file (where 'n' is the release number) supplied with
Oracle Database Installation Guide or Oracle Database Client Installation
Guide.

2.2.2 Checking the Environment Variables

This section describes the environment variables that must be set for the JDBC Thin
Driver. You must set the classpath for your installed JDBC Thin Driver. For JDK 8, you
must set the following values for the CLASSPATH variable:

ORACLE_HOVE/ j dbc/ |i b/ oj dbc8. j ar
ORACLE_HOWE/ j | i b/ orai 18n.j ar

Ensure that there is only one JDBC class file, such as oj dbc8. j ar, and one
globalization classes file, or ai 18n. j ar , in the CLASSPATH variable.

2.2.3 Determining the JDBC Driver Version

Starting from Oracle Database 12¢ Release 2 (12.2), you can get details about the JDBC
support in the database as follows:

> java -jar ojdbcé.jar
Oacle 12.1.0.0. JDBC 4.0 conpiled with JDK6

In addition, you can determine the version of the JDBC driver that you installed by
calling the get Dr i ver Ver si on method of the Or acl eDat abaseMet aDat a class.

Note:

The JDBC Thin Driver requires a TCP/IP listener to be running on the
computer where the database is installed.

Example 2-1 (page 2-4) illustrates how to determine the driver version:
Example 2-1 Determining the JDBC Driver Version

inport java.sql.*;
import oracle.jdbc.*;
i mport oracle.jdbc. pool . Oracl eDat aSour ce;

cl ass JDBCVersi on

{
public static void main (String args[]) throws SQLException

{

Oracl eDat aSour ce ods = new Oracl eDat aSour ce();
ods. set URL("j dbc: oracl e: thin:hr/hr@ocal host: 1521/ oracl e") ;
Connection conn = ods. get Connection();

/] Create Oracle DatabaseMetaData object
Dat abaseMet aData meta = conn. get Met aDat a() ;

/] gets driver info:
Systemout. printIn("JDBC driver versionis " + neta.getDriverVersion());

2-4 Oracle Database 2 Day + Java Developer's Guide

Installing Oracle JDeveloper

2.3 Installing Oracle JDeveloper

In this guide, the integrated development environment (IDE) that is used to create the
sample Java application using JDBC is Oracle JDeveloper release 11.1.1. This release of
JDeveloper is supported on the Microsoft Windows Vista, Windows XP, Windows
2003, Windows 2000, Linux, and Mac OS X operating systems. Installation of the latest
version of JDeveloper is described in detail in Installation Guide for Oracle [Developer,
which is available online on the Oracle Technology Network at the following
locations:

See Also:

e http://downl oad. oracl e. com docs/ cd/ E12839_01/instal | .
1111/ e13666/toc. htm

* Also read JDeveloper 11g Release Notes, which is available online on the
Oracle Technology Network at

htt p://ww. oracl e. com t echnet wor k/ devel oper -t ool s/
j dev/ overvi ew i ndex. ht m

Getting Started with the Application 2-5

http://download.oracle.com/docs/cd/E12839_01/install.1111/e13666/toc.htm
http://download.oracle.com/docs/cd/E12839_01/install.1111/e13666/toc.htm
http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html

Installing Oracle JDeveloper

2-6 2 Day + Java Developer's Guide

3

Connecting to Oracle Database 12c Release
2 (12.2)

This chapter is the first in a series of five chapters, each of which describes how to
create parts of a Java application that accesses Oracle Database 12¢ Release 2 (12.2) and
displays, modifies, deletes, and updates data on it. To be able to access the database
from a Java application, you must connect to the database using a

j ava. sql . Connect i on object.

This chapter includes the following sections:

Connecting to Oracle Database from a Java Application (page 3-6)

3.1 Connecting to Oracle Database from JDeveloper

You can set up and manage database connections in JDeveloper to enable your
application to communicate with external data sources, including Oracle Database 12c
Release 2 (12.2) and offline database objects. This is done using the Database
Navigator. The same navigator is also used to manage other connections your
application needs, such as connections to application servers. The following
subsections describe how you can use the Database Navigator to view the database
and its objects and to create a connection to the database:

* JDeveloper Database Navigator (page 3-1)
* Creating a Database Connection (page 3-2)

* Browsing the Data Using the Database Navigator (page 3-3)

3.1.1 JDeveloper Database Navigator

The Database Navigator displays all currently defined connections. To view the
Database Navigator, select the Database Navigator tab in the navigator panel on the
top left-hand side of the JDeveloper display, if it is displayed, or use the View menu.
For an illustration of the default layout of the JDeveloper IDE, see Figure 1-1

(page 1-3).

You can use the Database Navigator to browse through the connections it displays. In
particular, for a database schema, you can also view database objects, tables, views,
and their contents.

Database connections are shown under the IDE Connections node. To view the objects
in the database, expand the connection. Expanding a schema displays nodes for the
object types in that schema. Expanding the node for an object type displays its
individual objects. When you expand a table node, you can view the structure of the
table and the data within the table.

Connecting to Oracle Database 12c Release 2 (12.2) 3-1

Connecting to Oracle Database from JDeveloper

3.1.2 Creating a Database Connection

You can connect to any database for which you have connection details. When you
create a database connection, you must specify a user name and a password. By
default, the connection enables you to browse only the schema of the user that you
specify in the connection.

To create a connection, follow these steps:
1. Start JDeveloper.

2. From the View menu, go to Database and select Database Navigator. The
Database Navigator is displayed, showing you a list of available connections.

3. Right-click IDE Connection, and from the shortcut menu, select New Connection.
The Create Database Connection screen is displayed.

4. On the Create Database Connection screen, do not change the default values for
the connection name and type, Connect i onl and Oracl e (JDBC) . Enter HRin
both the Username and Password fields. Do not enter a value for Role, and select
Deploy Password. You must provide information about the computer where your
database is located. Your database administrator should provide you with this
information.

Enter the following information:
e Driver:thin

e Host Name: Host nane of the conputer where O acl e Database
12c Release 1 (12.1) is installed

If the database is on the same computer, then for the Host Name parameter,
enter | ocal host .

e JDBC Port: 1521

e SID:oracle

Click Test Connection. If the connection is successful, the word Success! is
displayed in the Status field.

Figure 3-1 shows the Connection screen where you enter these details.

3-2 Oracle Database 2 Day + Java Developer's Guide

Connecting to Oracle Database from JDeveloper

Figure 3-1 Specifying Connection Details

é- Create Database Connection
Choose an application From the list to create a database connection owned by and deployed with =
that application. Choose IDE Connections to create a connection that can be added to any]
application.
Creake Connection In: |Eﬂ IDE Connections -|

Connection Mame: |Connecti0n1 |

Connection Type: |Orac|e (IDEC) '|
Username: |HR | Role: | [~
Password: |o. | [v] 5ave Password

- Oracle (JDBC) Settings

[Enter Custom JDBEC LRL

Drivgr: ithin '|
Host Mame: ilocalhost | JDEC Port: 1521 |
(@) SID: %€ |

() Service Mame:

| Test Connection

Fuccess!

| Help | | (8] 4 J | Cancel |

5. Click Finish to create the connection and close the screen.

Disconnecting and Reconnecting from Oracle Database in JDeveloper

To disconnect from the database in JDeveloper, in the Database Navigator, right-click
the connection name and select Disconnect. The display in the Database Navigator
now shows only the name of the connection, without the plus (+) symbol for
expanding the node. To reconnect to the database, right-click the connection name and
select Connect.

3.1.3 Browsing the Data Using the Database Navigator

After you have successfully established a connection to the database, you can browse
its contents through the Database Navigator. The Database Navigator displays a
navigable, hierarchical tree structure for the database, its objects, their instances, and
the contents of each. To view the contents at each level of the hierarchy of the database
connection that you created, do the following:

1. The IDE Connections node in the Database Navigator now shows a node with the
name of your connection. Click the plus symbol (+) to the left of the connection
name to expand the navigation tree. To display a list of the instances of an object
type, for example Tables, expand the Table navigation tree.

2. The Structure window below the navigator shows the detailed structure of any
object selected in the navigator. Select a table in the navigator (for example
Employees) to see the columns of that table in the Structure window.

Connecting to Oracle Database 12c Release 2 (12.2) 3-3

Setting Up Applications and Projects in JDeveloper

Figure 3-2 Viewing the Table Structure and Data

® Oracle JDeveloper 11g Release 1

File Edit Yiew Application Refactor Search Mavigate Build Run VYersioning Tools Window Help

GoEe 90 L ER 0 -O- & dilililiom- P-&- 1A

(Elapplication M., | [ByDatabase Navigator [@startpage |[Blconnectiont |EEEMPLOYEES
= @Y i 7 B - actions..,
=@, IDE Connections cotumn_nare [pata_Tvee |8 mocasie |pata_perauct B column o [§ commenTs
E}a Connection EMPLOYEE_ID NIMEER.(6,0) Ho {nall) 1 Primary key of
(-3 Tables (Fitered) FIRST NAME VARCHARZ (20 EYTE) Yes (null) 2 First name of
- [COUNTRIES LAST NAME VARCHARZ (25 BYTE) Ho [null) 3Last neme of t

[DEPARTMENTS

s pesastast EMATL VARCHARZ (25 BYTE) Ho {null) 4Email id of tk
m EMPLOVEE_ID PHONE_NUMEER. VARCHARZ (20 EYTE) Yes (null) 5 Phone number c
] FIRST_MAME HIRE_DATE DATE o [null) 6Date when the
-] LAST_NAME 10E_ID VARCHRRZ (10 EYTE) No [null) 7 Current job of
H EMaL SALARY NUMEER(5,2) Yes (null) % Monthly salary
] PHONE_NUMBER COMMISSTON PCT NUMEER(Z,2) Yes {null) 9 Conmission per
g T;ZE;EATE MANAGER_ID NUMEER (6, 0} Yes il 10Manager id of
[saLary DEPARTMENT I NUMBER(4,0) Yes {rnall) 1l Department id
-] COMMISSION_PCT
] MANAGER_ID
-] DEPARTMENT _ID

- 108_HISTORY
-3 J08s
- LocaTIoNS

P FA o

= EMPLOYEES - Structure =
*
=-fE EMPLOYEES

=8 Columns
B COMMISSICN PCT
- B DEPARTMENT_ID
w-E Eman
B EMPLOYEE_ID
B FIRST_NAME
B HIRE_DATE
&5 10810
B LasT_nave
- E MANAGER_ID
: _HUMBER

SALARY
@ Constraints
-[08 Indexes

|-D Properties
a Schema : HR

=

-

4. If you double-click a table in the navigator, the structure of that table is displayed
in the main editing area of the window. It includes details about all the columns,
such as Name, Type, and Size, so you can browse the table definition.

To view the data from a table, select the Data tab below the table structure. You can
now view and browse through the table data.

5. You can also edit the objects in the Database Navigator. To edit a table, right-click
the table and select Edit from the shortcut menu. A dialog box enables you to make
changes to the selected table.

3.2 Setting Up Applications and Projects in JDeveloper

In JDeveloper, you create your work in an application, within which you can organize
your work into a number of projects. JDeveloper provides a number of application
templates, to help you to create the project structure for standard types of application
relatively quickly and easily. At the time you create your application in JDeveloper,
you can choose the application template that matches the type of application you will
be building.

The application template you select determines the initial project structure (the named
project folders within the application) and the application technologies that will be

3-4 Oracle Database 2 Day + Java Developer's Guide

Setting Up Applications and Projects in JDeveloper

included. You can then add any extra libraries or technologies you need for your
particular application, and create additional projects if you need them.

3.2.1 Using the JDeveloper Application Navigator

The Application Navigator displays all your applications and projects. When you first
start JDeveloper, the Application Navigator is displayed by default on the left side of
the JDeveloper IDE.

To view the Application Navigator when it is not displayed, you can click the
Applications tab in the navigator panel on the top left-hand side of the JDeveloper
display, or select Application Navigator from the View menu.

The Application Navigator shows a logical grouping of the items in your projects. To
see the structure of an individual item, you can select it and the structure is displayed
in the Structure window.

From the Application Navigator, you can display items in an appropriate default
editor. For example, if you double-click a Java file, the file opens in the Java Source
Editor, and if you double-click a JavaServer Pages (JSP) file, it opens in the JSP/HTML
Visual Editor.

3.2.2 Creating an Application and a Project

To get started with JDeveloper, you must create an application and at least one project
in which to store your work, as follows:

1. In the Application Navigator, click New Application.

2. The Create Generic Application wizard is displayed. In the Name your application
screen, enter HRApp in the Application Name field, and from the Application
Template list, select Generic Application. Click Next.

3. On the Name your project screen, enter Vi ewas the name of the project. Click
Finish.

4. The new HRApp application is displayed in the Application Navigator.

5. Save your application. To do this, from the File menu, select Save All.

3.2.3 Viewing the Javadoc and Source Code Available in the Project Scope

You can view the Javadoc or the code for any of the classes available in the project
technology scope within JDeveloper. In addition, you can view the details of all the
methods available for those classes.

For example, to see the code or Javadoc for the Connect i on class, do the following:

1. With your project selected in the Application Navigator, from the Navigate menu
select Go to Java Type. You can also do this for a specific file in your project.

2. In the Go to Java Type dialog box, type the name of the Java class.

3. Enter the name of the class you want to view in the Name field, or click Browse to
find the class. For the Connect i on class, start to enter Connect i on, and from the
displayed list select Connection (java.sql).

Connecting to Oracle Database 12c Release 2 (12.2) 3-5

Connecting to Oracle Database from a Java Application

Figure 3-3 Selecting the Class to View the Javadoc in JDeveloper

Go to Java Type @

Enter a Java type name, ‘Wildcards (7 and *) ar camel case may be used.

[@@ connection| x(]

B Connection - com.sun. corba.se.pept.transpark

= connection - com,sun, corba,se,spilegacy . conneckion
[connection - com,sun, jndi.ldap

=] connection - java.sql

= connection - sun.rmi.kranspork

=l ConnectionAcceptor - sun.rmi. bransportk, bop

[connectionattribukes - sun.jdbe.odbe.ee

[connectionCache - com. sun.cotba,se, pept.transport
[connectionDese - com.sun, jndi.ldap, pool

[connectionEvent - javax.sql

@

4. Click OK.

3.3 Connecting to Oracle Database from a Java Application

So far, you have seen how to connect to the database from JDeveloper. To initiate a
connection from the Java application, you use the Connect i on object from the JDBC
application programming interface (API).

This section describes connecting to the database from the Java application in the
following subsections:

* Overview of Connecting to Oracle Database (page 3-6)
® Specifying Database URLs (page 3-7)

¢ Creating a Java Class in JDeveloper (page 3-9)

* Java Libraries (page 3-10)

¢ Adding JDBC and JSP Libraries (page 3-11)

e Importing JDBC Packages (page 3-12)

¢ Declaring Connection-Related Variables (page 3-12)

* Creating the Connection Method (page 3-13)

3.3.1 Overview of Connecting to Oracle Database

In Java, you use an instance of the Dat aSour ce object to get a connection to the
database. The Dat aSour ce interface provides a complete replacement for the
previous JDBC Dr i ver Manager class. Oracle implements the

j avax. sql . Dat aSour ce interface with the Or acl eDat aSour ce class in the
oracl e. j dbc. pool package. The overloaded get Connect i on method returns a
physical connection to the database.

Note:

The use of the Dri ver Manager class to establish a connection to a database is
deprecated.

3-6 Oracle Database 2 Day + Java Developer's Guide

Connecting to Oracle Database from a Java Application

You can either set properties using appropriate set xxx methods for the Dat aSour ce
object or use the get Connect i on method that accepts these properties as input
parameters.

Important Dat aSour ce Properties are listed in Table 3-1 (page 3-7).

Table 3-1 Standard Data Source Properties
- - __|

Name

Type Description

dat abaseNane

String Name of the particular database on the server. Also known as the service
name (or SID) in Oracle terminology.

dat aSourceNane String Name of the underlying data source class.
description String Description of the data source.
net wor kProtoco String Network protocol for communicating with the server. For Oracle, this applies

|

password
port Nunber
server Name
user

driver Type

url

only to the JDBC Oracle Call Interface (OCI) drivers and defaults to t cp.

String Password for the connecting user.

i nt Number of the port where the server listens for requests
String Name of the database server

String User name to be used for login

String Specifies the Oracle JDBC driver type. It can be either oci or t hi n.
This is an Oracle-specific property.
String Specifies the URL of the database connect string.You can use this property in

place of the standard por t Nunber , net wor kPr ot ocol , ser ver Nane, and
dat abaseNamne properties.

This is an Oracle-specific property.

If you choose to set the ur | property of the Dat aSour ce object with all necessary
parameters, then you can connect to the database without setting any other properties
or specifying any additional parameters with the get DBConnect i on method. For
more information about setting the database URL, refer to the Specifying Database
URLs (page 3-7) section.

Note:

The parameters specified through the get Connect i on method override all
property and ur | parameter settings previously specified in the application.

3.3.2 Specifying Database URLs

This release of Oracle JVM supports Internet Protocol Version 6 (IPv6) addresses in the
URL and system names of the Java code in the database, which resolve to IPv6
addresses.

Database URLs are strings that you specify for the value of the ur | property of the
Dat aSour ce object. The complete URL syntax is the following:

jdbc:oracle:driver_type:[usernanme/ passwor d] @at abase_speci fi er

Connecting to Oracle Database 12c Release 2 (12.2) 3-7

Connecting to Oracle Database from a Java Application

The first part of the URL specifies which JDBC driver is to be used. The supported
dri ver _t ype values for client-side applications are t hi n and oci . The brackets
indicate that the user name and password pair is optional. The

dat abase_speci fi er value identifies the database to which the application is
connected.

The following is the syntax for thin-style service names that are supported by the Thin
driver:

jdbc: oracl e:driver_type:[usernane/ password] @/
host _nane: port _nunber: SID

For the sample application created in this guide, if you include the user name and
password, and if the database is hosted locally, then the database connection URL is as
shown in Example 3-1 (page 3-8).

Example 3-1 Specifying the url Property for the DataSource Object

jdbc:oracle:thin:hr/hr@ocal host: 1521: oracl e

3.3.2.1 Using the Default Service Feature of the Oracle Database

If you have performed Oracle Database server installation in Typical mode, then the
default service name used by the Oracle instance is ORCL, and the following Easy
Connect syntax can be used to connect to that instance:

sqgl plus /nol og
SQL> CONNECT user name@ host / ORCL"
SQ> Enter password: password

The Easy Connect feature, which was introduced in Oracle Database 11g Release 1
(11.1), makes the following parts of the conventional JDBC connection URL syntax
optional:

jdbc: oracl e:driver_type:[usernane/ password] @//] host _nane[: port]
[:oracle]

In this URL:
e //isoptional.
® . port isoptional.
Specify a port only if the default Oracle Net listener port (1521) is not used.
e :oracl e (or the service name) is optional.

The connection adapter for the Oracle Database connects to the default service on
the host. On the host, this is set to ORACLE in the | i st ener . or a file.

After making changes to the | i st ener . or a file, you must restart the listener with
the following command:

> |snrctl start nylistener

The following URLSs should work with this configuration:

jdbc:oracle:thin: @/test555. testserver.com

jdbc:oracle:thin: @/test555. testserver.com 1521

jdbc: oracl e:thin: @est555. testserver.com

jdbc:oracle:thin: @est555. testserver.com 1521

j dbc: oracl e: t hi n: @ DESCRI PTI ON=(ADDRESS=(PROTOCOL=TCP) (HOST=t est 555. t est ser ver. con)
(PORT=1521)))

j dbc: oracl e: t hi n: @ DESCRI PTI ON=(ADDRESS=(PROTOCOL=TCP) (HOST=t est 555. t est server. con)))

3-8 Oracle Database 2 Day + Java Developer's Guide

Connecting to Oracle Database from a Java Application

jdbc: oracl e: t hi n: @ DESCRI PTI ON=(ADDRESS=(PROTOCOL=TCP) (HOST=t est 555. t est server. com)
(PORT=1521)) (CONNECT_DATA=(SERVI CE_NAME=)))

Note:

Default service is a new feature in Oracle Database 12c Release 1 (12.1). If you
use any other version of the Oracle Database to connect to the database, then
you must specify the SID and port number.

Example 3-2 Default Service Configuration in listener.ora

MYLI STENER = (ADDRESS LI ST=
(ADDRESS=(PROTOCOL=t cp) (HOST=t est 555) (PORT=1521))

)
DEFAULT_SERVI CE_MYLI STENER=dbj f . regr ess. r dbns. dev. t est server. com

SI D LI ST_MYLI STENER = (SID LI ST=
(SI'D_DESC=(SI D_NAVE=dbj f) (G_LOBAL_DBNAME=dbj f . r egr ess. r dbms. dev. t est server. con
(ORACLE_HOMVE=/test/oracl e))

)
Related Topics:

Oracle Database Net Services Administrator’s Guide

3.3.3 Creating a Java Class in JDeveloper

The first step in building a Java application is to create a Java class. The following
instructions describe how you create a class called Dat aHand| er , which will contain
the methods for querying the database and modifying the data in it.

1. In the Application Navigator, right-click the View project, and from the shortcut
menu, select New.

2. In the New Gallery dialog box, select General in the Categories list. In the Items
list, select Java Class, and click OK. The Create Java Class dialog box is displayed.

3. In the Create Java Class dialog box, enter Dat aHandl er in the Name text box, and
hr in the Package text box. Do not change the default values of the Optional
Attributes, and click OK. The Create Java Class dialog box with the appropriate
values specified is shown in Figure 3-4 (page 3-10).

Connecting to Oracle Database 12c Release 2 (12.2) 3-9

Connecting to Oracle Database from a Java Application

Figure 3-4 Creating a Java Class

Create Java Class n
Enter the details of vour new class. I:’

Mame: |DataHandIer |

Package: | ‘\%

Extends: |java.|ang.0bject | k_%

Optional Attributes

Implements: o X
Access Modifiers Other Modifiers
(%) public () <Mane=
() package protected () abstract
() Final

Constructors From Superclass
Implement Abstract Methods
[1ain Method

| Help | | Ok J | Cancel |

4. The skeleton Dat aHandl er class is created and is displayed in the Java Source
Editor. The package declaration, the class declaration, and the default constructor
are created by default. Figure 3-5 (page 3-10) shows the class displayed in the Java
Source Editor, ready for you to add your Java code:

Figure 3-5 Java Source Editor
@DataHandler.java |

(@ UOHRS4 BURSE AMkh B0
package hr:

[Epublic class DataHandler {
= public DataHandler() {
super () ;

}

3.3.4 Java Libraries

Oracle JDeveloper comes with standard libraries to help Java application
programming. These libraries include API support for Application Development
Framework (ADF), Oracle libraries for JDBC, JSP, and so on.

To use JDBC in your project, you import the Oracle JDBC library into the project.
Similarly, to use JSP technology, you import the JSP Runtime library.

3.3.4.1 Overview of the Oracle JDBC Library
Important packages of the Oracle JDBC library include the following:

3-10 Oracle Database 2 Day + Java Developer's Guide

Connecting to Oracle Database from a Java Application

or acl e. j dbc: The interfaces of the or acl e. j dbc package define the Oracle
extensions to the interfaces in the j ava. sql package. These extensions provide
access to Oracle SQL-format data and other Oracle-specific features, including
Oracle performance enhancements.

oracl e. sql : The or acl e. sql package supports direct access to data in SQL
format. This package consists primarily of classes that provide Java mappings to
SQL data types and their support classes.

oracl e. j dbc. pool : This package includes the Or acl eDat aSour ce class that
is used to get a connection to the database. The overloaded get Connecti on
method returns a physical connection to the database.

3.3.4.2 Overview of the JSP Runtime Library

This library includes the classes and tag libraries required to interpret and run JSP files
on the Oracle WebLogic Server that comes with JDeveloper.

3.3.5 Adding JDBC and JSP Libraries

To include libraries in your project, perform the following steps:

1.

Double-click the View project in the Application Navigator to display the Project
Properties dialog box.

Click Libraries and Classpath, and then click Add Library.... The Add Library
dialog box is displayed with a list of the available libraries for the Java2 Platform,
Standard Edition (J2SE) version is displayed.

In the Add Library dialog box, scroll through the list of libraries in the Extension
folder. Select JSP Runtime library and click OK to add it to the list of selected
libraries for your project. Similarly, add the Oracle JDBC library. Figure 3-6
(page 3-11) shows the Oracle JDBC library added to the Vi ew project.

Figure 3-6 Importing Libraries

é- Add Library - il

(@8-

Libraries:

----- m JEE-WS Thent

..... @l Ja-ws RI Client

----- @l JA:-ws RI Web Services

----- [T =g AW

----- ol 57L 1.0 Tags

----- [R

----- §l 357L 1.1 Tags

----- [R

----- ol 15TL 1.2 Tags

----- @l MDS Runtime:

----- m MD3 Runtime Dependencies

e

| Mew. .. || Load Dir... |

| Help | | O | | Cancel

Connecting to Oracle Database 12c Release 2 (12.2) 3-11

Connecting to Oracle Database from a Java Application

4. Click OK.

3.3.6 Importing JDBC Packages
To use JDBC in the Java application, import the following JDBC packages:

1. If the Dat aHandl er . j ava class is not already open in the Java Source Editor, in
the Application Navigator, expand the View project, Application Sources, and
your package (hr) and double-click DataHandler.java.

2. At the end of the generated package declaration, on a new line, enter the i npor t
statements shown in Example 3-3 (page 3-12).

Example 3-3 Importing Packages in a Java Application

package hr;
import java.sql.Connection;
import oracle.jdbc. pool . Oracl eDat aSour ce;

3.3.7 Declaring Connection-Related Variables

Connection information is passed to the connection method by using the following
connection variables: the connection URL, a user name, and the corresponding
password.

Use the Java Source Editor of JDeveloper to edit the Dat aHandl er . j ava class as
follows:

1. After the Dat aHandl er constructor, on a new line, declare the three connection
variables as follows:

String jdbcUrl = null;
String userid = null;
String password = null;

These variables will be used in the application to contain values supplied by the
user at login to authenticate the user and to create a connection to the database. The
j dbcUr | variable is used to hold the URL of the database that you will connect to.
The useri d and passwor d variables are used to authenticate the user and
identify the schema to be used for the session.

3-12 Oracle Database 2 Day + Java Developer's Guide

Connecting to Oracle Database from a Java Application

Note:

The login variables have been set to null to secure the application. At this
point in the guide, application login functionality is yet to be built into the
application. Therefore, to test the application until login functionality is built
in, you can set values in the login variables as follows:

Set the j dbcUr | variable to the connect string for your database.

String jdbcUrl = "jdbc:oracle:thin: @ocal host: 1521: ORACLE";

Set the variables useri d and passwor d to hr as follows:

String userid = "hr";
String password = "hr";

Make sure you reset these to nul | as soon as you finish testing.

For more information about security features and practices, refer to Oracle
Database Security Guide and the vendor-specific documentation for your
development environment.

2. On a new line, declare a connection instance as follows:

Connection conn;

Your Java class should now contain the code as shown in the following code
example.

Declaring Connection Variables and the Connection Object

package hr;
i mport java.sql.Connecti on;
i mport oracl e.jdbc. pool . Oracl eDat aSour ce;

public class DataHandler {
public DataHandler() {

}

String jdbcUrl = null;
String userid = null;
String password = null;
Connection conn;

}

Related Topics:
Oracle Database Security Guide
3.3.8 Creating the Connection Method
To connect to the database, you must create a method as follows:

1. Add the following method declaration after the connection declaration:

public void get DBConnection() throws SQLException

The Java Code Insight feature displays a message reminding you to import the
SQLExcept i on error handling package. Press the Alt+Enter keys to import it. The
i nport java.sql.SQLExcepti on statement is added to the list of import
packages.

Connecting to Oracle Database 12c Release 2 (12.2) 3-13

Connecting to Oracle Database from a Java Application

2. At the end of the same line, add an open brace ({) and then press the Enter key.
JDeveloper automatically creates the closing brace, and positions the cursor in a
new empty line between the braces.

3. On anew line, declare an Or acl eDat aSour ce instance as follows:
Or acl eDat aSour ce ds;
4. Enter the following to create a new Or acl eDat aSour ce object:
ds = new Oracl eDat aSour ce();
5. Start to enter the following to set the URL for the Dat aSour ce object:

ds. set URL(j dbcUrl);

Java Code Insight prompts you by providing you with a list of available

Or acl eDat aSour ce methods. Scroll through the list to select the

set URL(St ri ng) method, and press the Enter key to select it into your code. In
the parentheses for this function, enter j dbcUr | in place of ar gO0.

Figure 3-7 (page 3-14) shows how the Java Code Insight feature in JDeveloper
helps you with inserting code.

Figure 3-7 Java Code Insight

= public woid getDEConnection throws S0LExceptionf

OracleDataiource ds;

da = mew OraclelDatasourcef);

&SN-WSWE&'JI

woid

6. On the next line, enter the following;:

conn = ds. get Connection(userid, password);

As usual, Java Code Insight will prompt you with a list of methods for ds. This
time, select get Connecti on(String, String) . In the parentheses, enter
useri d,passwor d. End the line with a semicolon (;).

Your code should look similar to the code in the following code example.
Adding a Method to Connect to the Database

package hr;
import java.sql.Connection;
inport java.sql.SQ.Exception;

import oracle.jdbc. pool . Oracl eDat aSour ce;

public class DataHandl er {
public DataHandler() {
}
String jdbcUrl = null;
String userid = null;
String password = null;

3-14 Oracle Database 2 Day + Java Developer's Guide

Connecting to Oracle Database from a Java Application

Connection conn;
public void get DBConnection() throws SQLException{
O acl eDat aSour ce ds;
ds = new Oracl eDat aSour ce();
ds. set URL(j dbcUrl);
conn=ds. get Connecti on(useri d, password);

}

7. Compile your class to ensure that there are no syntax errors. To do this, right-click
in the Java Source Editor, and select Make from the shortcut menu. A Successf ul
conpi | at i on message is displayed in the Log window below the Java Source
Editor window.

Connecting to Oracle Database 12c Release 2 (12.2) 3-15

Connecting to Oracle Database from a Java Application

3-16 2 Day + Java Developer's Guide

A

Querying for and Displaying Data

This chapter adds functions and code to the Dat aHandl er . j ava file for querying the
database. This chapter has the following sections:

Overview of Querying for Data in Oracle Database (page 4-1)

Querying Data from a Java Application (page 4-4)

Creating JSP Pages (page 4-7)

Adding Dynamic Content to the JSP Page: Database Query Results (page 4-14)
Filtering a Query Result Set (page 4-19)

Adding Login Functionality to the Application (page 4-23)

Testing the JSP Page (page 4-29)

4.1 Overview of Querying for Data in Oracle Database

In outline, to query Oracle Database 12¢ Release 2 (12.2) from a Java class to retrieve
data, you must do the following;:

1.

4.

Create a connection by using the Or acl eDat aSour ce. get Connect i on
method.

See Also: Connecting to Oracle Database 12¢ Release 1 (12.1) (page 3-1)

Define your SQL statements with the methods available for the connection object.
The cr eat eSt at enent method is used to define a SQL query statement.

Using the methods available for the statement, run your queries. You use the
execut eQuer y method to run queries on the database and produce a set of rows
that match the query conditions. These results are contained in a Resul t Set
object.

You use a Resul t Set object to display the data in the application pages.

The following sections describe important Java Database Connectivity (JDBC)
concepts related to querying the database from a Java application:

SQL Statements (page 4-2)
Query Methods for the Statement Object (page 4-2)
Result Sets (page 4-3)

Querying for and Displaying Data 4-1

Overview of Querying for Data in Oracle Database

4.1.1 SQL Statements

Once you connect to the database and, in the process, create a Connect i on object, the
next step is to create a St at ement object. The cr eat eSt at enent method of the
JDBC Connect i on object returns an object of the JDBC St at errent type. The
following example shows how to create a St at ement object.

Example 4-1 Creating a Statement Object

Statement stnt = conn.createStatenent();

The St at ement object is used to run static SQL queries that can be coded into the

application.

In addition, for scenarios where many similar queries with differing update values
must be run on the database, you use the O acl ePr epar edSt at ement object, which
extends the St at ement object. To access stored procedures on Oracle Database 12¢
Release 1 (12.1), you use the Or acl eCal | abl eSt at ement object.

See Also:

* Using OraclePreparedStatement (page 6-1)

* Using OracleCallableStatement (page 6-2)

4.1.2 Query Methods for the Statement Object

To run a query embedded in a St at ement object, you use variants of the execut e
method. Important variants of this method are listed in Table 4-1 (page 4-2).

Table 4-1 Key Query Execution Methods for java.sql.Statement

Method Name

Return Type

Description

execute(String sql)

addBat ch()

execut eBat ch()

executeQuery(String sql)

execut eUpdat e(String
sql)

Bool ean

voi d

int[]

Resul t Set

int

Runs the given SQL statement, which
returns a Boolean response: true if the
query runs successfully and false if it

does not.

Adds a set of parameters to a
Pr epar edSt at ement object batch of
commands.

Submits a batch of commands to the
database for running, and returns an
array of update counts if all commands
run successfully.

Runs the given SQL statement, which
returns a single Resul t Set object.

Runs the given SQL statement, which
may be an | NSERT, UPDATE, or DELETE
statement or a SQL statement that
returns nothing, such as a SQL DDL
statement.

4-2 Oracle Database 2 Day + Java Developer's Guide

Overview of Querying for Data in Oracle Database

See Also:

http://ww. oracl e. com t echnet wor k/ j ava/ j avase/
docunent ati on/ api -j sp-136079. ht m

4.1.3 Result Sets

A Resul t Set object contains a table of data representing a database result set, which
is generated by executing a statement that queries the database.

A cursor points to the current row of data in a Resul t Set object. Initially, it is
positioned before the first row. Use the next method of the Resul t Set object to
move the cursor to the next row in the result set. It returns f al se when there are no
more rows in the Resul t Set object. Typically, the contents of a Resul t Set object
are read by using the next method within a loop until it returns f al se.

The Resul t Set interface provides accessor methods (get Bool ean, get Long,
get | nt, and so on) for retrieving column values from the current row. Values can be
retrieved by using either the index number of the column or the name of the column.

By default, only one Resul t Set object per St at enment object can be open at the same
time. Therefore, to read data from multiple Resul t Set objects, you must use multiple
St at ement objects. A Resul t Set object is automatically closed when the

St at ement object that generated it is closed, rerun, or used to retrieve the next result
from a sequence of multiple results.

Related Topics:

Oracle Database [DBC Developer’s Guide

4.1.3.1 Features of ResultSet Objects

Scrollability refers to the ability to move backward as well as forward through a
result set. You can also move to any particular position in the result set, through either
relative positioning or absolute positioning. Relative positioning lets you move a
specified number of rows forward or backward from the current row. Absolute
positioning lets you move to a specified row number, counting from either the
beginning or the end of the result set.

When creating a scrollable or positionable result set, you must also specify sensitivity.
This refers to the ability of a result set to detect and reveal changes made to the
underlying database from outside the result set. A sensitive result set can see changes
made to the database while the result set is open, providing a dynamic view of the
underlying data. Changes made to the underlying column values of rows in the result
set are visible. Updatability refers to the ability to update data in a result set and then
copy the changes to the database. This includes inserting new rows into the result set
or deleting existing rows. A result set may be updatable or read-only.

4.1.3.2 Summary of Result Set Object Types

Scrollability and sensitivity are independent of updatability, and the three result set
types and two concurrency types combine for the following six result set categories:

e Forward-only/read-only
¢ Forward-only/updatable

® Scroll-sensitive/read-only

Querying for and Displaying Data 4-3

http://www.oracle.com/technetwork/java/javase/documentation/api-jsp-136079.html
http://www.oracle.com/technetwork/java/javase/documentation/api-jsp-136079.html

Querying Data from a Java Application

® Scroll-sensitive/updatable
* Scroll-insensitive /read-only

® Scroll-insensitive/updatable

Example 4-2 (page 4-4) demonstrates how to declare a scroll-sensitive and read-only
Resul t Set object.

Note:

A forward-only updatable result set has no provision for positioning at a
particular row within the Resul t Set object. You can update rows only as
you iterate through them using the next method.

Example 4-2 Declaring a Scroll-Sensitive, Read-Only ResultSet Object

stm = conn. createStatenent (Resul t Set. TYPE_SCROLL_SENSI Tl VE,
Resul t Set . CONCUR_READ ONLY);

4.2 Querying Data from a Java Application

This section discusses how you can use JDeveloper to create a Java class that queries
data in Oracle Database 12c Release 1 (12.1) in the following sections:

¢ Creating a Method in JDeveloper to Query Data (page 4-4)

* Testing the Connection and the Query Methods (page 4-5)

4.2.1 Creating a Method in JDeveloper to Query Data

The following steps show you how to add a simple query method to your

Dat aHandl er . j ava class. If Dat aHandl er . j ava is not open in the JDeveloper
integrated development environment (IDE), double-click the Dat aHandl er . j ava file
in the Application Navigator to display it in the Java Source Editor.

1. Inthe Dat aHandl er class, add the following i mpor t statements after the existing
i mport statements to use the St at enent and Resul t Set JDBC classes:

i mport java.sql.Statenent;
i mport java.sql.ResultSet;

2. After the connect i on declaration, declare variables for St at enent , Resul t Set,
and St ri ng objects as follows:

Statement stnt;
Resul t Set rset;
String query;
String sql String;

3. Create a method called get Al | Enpl oyees, which will be used to retrieve
employee information from the database. Enter the signature for the method:

public ResultSet getAll Enpl oyees() throws SQException{

4. Press the Enter key to include the closing brace for the method and a new line to
start entering the method code.

4-4 Oracle Database 2 Day + Java Developer's Guide

Querying Data from a Java Application

5. Call the get DBConnect i on method created earlier:
get DBConnecti on();

6. After calling the get DBConnect i on method, use the cr eat eSt at ement method
of the Connect i on instance to provide context for executing the SQL statement
and define the Resul t Set type. Specify a read-only, scroll-sensitive Resul t Set
type as stated in the following code:

stm = conn. createStatenment (Resul t Set. TYPE_SCROLL_SENSI Tl VE,
Resul t Set . CONCUR_READ ONLY);

The Java Code Insight feature can help you ensure that the statement syntax is
correct.

7. Define the query and print a trace message. The following code uses a simple query
to return all the rows and columns in the Enpl oyees table, where the data is
ordered by the Employee ID:

query = "SELECT * FROM Enpl oyees ORDER BY enpl oyee_i d";
Systemout. println("\nExecuting query: " + query);

8. Run the query and retrieve the results in the Resul t Set instance as follows:
rset = stnt.executeQuery(query);

9. Return the Resul t Set object:
return rset;

10. Save your work. From the File menu, select Save AllL

Example 4-3 Using the Connection, Statement, Query, and ResultSet Objects

public ResultSet getAllEnpl oyees() throws SQLException{
get DBConnecti on();
stm = conn. createStat enent (Resul t Set. TYPE_SCROLL_SENSI Tl VE,
Resul t Set . CONCUR_READ ONLY);
query = "SELECT * FROM Enpl oyees ORDER BY enpl oyee_i d";
Systemout. printlIn("\nExecuting query: " + query);
rset = stnt.executeQuery(query);
return rset;

}

The code for the get Al | Enpl oyees method should be as shown in Example 4-3
(page 4-5).

4.2.2 Testing the Connection and the Query Methods

In the following steps, you create a simple Java class to test the methods in the

Dat aHandl er . j ava class. To test your application at this stage, you can temporarily
set the value of the j dbcUr | variable to the connection string for your database and
set the values of the user i d and passwor d variables to the values required to access
the HR schema.

1. Open the Dat aHandl er . j ava class in the Java Visual Editor from the Application
Navigator.

2. Change thej dbcUrl, useri d and passwor d variables to contain the values
required for the HR schema as follows:

Querying for and Displaying Data 4-5

Querying Data from a Java Application

String jdbcUrl = "connect-string";

String userid = "HR';

String password = "hr";

where connect - st ri ng is, for example:

jdbc:oracl e:thin: @ocal host: 1521: ORACLE

See Also:

Declaring Connection-Related Variables (page 3-12) in Connecting to Oracle
Database 12c Release 1 (12.1) (page 3-1)

3. Create a new Java class named JavaC i ent in the hr package. Make it a public
class and generate a default constructor and a mai n method. Note that you must
select the Main Method check box from the Optional Attributes panel to generate
the mai n method.

The skeleton JavaCl i ent . j ava class is created and displayed in the Java Source
Editor.

See Also:

Creating a Java Class in JDeveloper (page 3-9) in Connecting to Oracle
Database 12¢ Release 1 (12.1) (page 3-1) for information about creating a Java
class file

4. Import the Resul t Set package:
inport java.sql.ResultSet;

5. In the mai n method declaration, add exception handling as follows:
public static void main(String[] args) throws Exception{

6. Replace the JavaCl i ent object created by default with a Dat aHand| er object.
Locate the following line in the mai n method:

JavaCient javaCient = new JavaCient();
Replace this with:
Dat aHandl er dat ahandl er = new Dat aHandl er ();

7. Define a Resul t Set object to hold the results of the get Al | Enpl oyees query,
and iterate through the rows of the result set, displaying the first four columns,
Enpl oyee 1d,First Nanme,Last Nane, and Emai |l . To do this, add the
following code to the mai n method:

Resul t Set rset = datahandl er. get Al | Enpl oyees();

while (rset.next()) {

Systemout.printin(rset.getlnt(1) +" " +
rset.getString(2) + +
rset.getString(3) + +
rset.getString(4));

}

4-6 Oracle Database 2 Day + Java Developer's Guide

Creating JSP Pages

8.

10.

11.

Compile the JavaCl i ent . j ava file to check for compilation errors. To do this,
right-click in the Java Source Editor, and select Make from the shortcut menu.

If there are no errors in compilation, you should see the following message in the
Log window:

Successful conpilation: 0 errors, 0 warnings

Run the Javad i ent . j ava file. To do this, right-click in the Java Source Editor
window and select Run from the shortcut menu.

Examine the output in the Log window. Notice the trace message, followed by the
four columns from the Enpl oyees table as shown in Figure 4-1 (page 4-7).

Figure 4-1 Test Output for Query Method in Log Window
Running: view.jpr - Log

Executing query: SELECT * FROM Emplovess ORDEL BY emplovee_id

100 Steven EHing SEING

101 MNeena Kochhar NEOCHHLL

102 Lex De Haan LDEHAAN

103 Alexander Hunold AHUNOLLD

104 Eruce Ernst EERNST

108 Dawvid Austin DATETIN

106 Walli Pataballa VPATABAL

107 Diana Lorentz DLORENTE

3 Il 1 MOTEEMLT

[Running: view jpr

When you finish testing the application, set the j dbcUr | , useri d and password
variables in Dat aHandl| er . j ava back tonul | .

See Also:

Declaring Connection-Related Variables (page 3-12)

4.3 Creating JSP Pages

The HRApp application uses JavaServer Pages (JSP) technology to display data. JSP
technology provides a simple, fast way to create server-independent and platform-
independent dynamic Web content. A JSP page has the . j sp extension. This extension
notifies the Web server that the page should be processed by a JSP container. The JSP
container interprets the JSP tags and scriptlets, generates the content required, and
sends the results back to the client as an HTML or XML page.

To develop JSP pages, you use some or all of the following:

HTML tags to design and format the dynamically generated Web page

Standard JSP tags or Java-based scriptlets to call other components that generate
the dynamic content on the page

JSP tags from custom tag libraries that generate the dynamic content on the page

Querying for and Displaying Data 4-7

Creating JSP Pages

See Also:

http://ww. oracl e. com technet wor k/ j aval j avaee/ | sp/
i ndex. htm

In this section, you will see how you can create JSP pages for the application in this
guide in the following sections:

* Overview of Page Presentation (page 4-8)

* Creating a Simple JSP Page (page 4-9)

* Adding Static Content to a JSP Page (page 4-10)
e Adding a Style Sheet to a JSP Page (page 4-12)

4.3.1 Overview of Page Presentation
JSP pages can do the following:

¢ Display data
* Hold input data entered by users adding employees and editing employee data

¢ Hold the code needed to process the actions of validating user credentials and
adding, updating, and deleting employee records in the database

JSP pages are presented to users as HITML or XML. So, you can control the
presentation of data in the same way as you do it for static HTML and XML pages.
You can use standard HTML tags to format your page, including theti t | e tag in the
header to specify the title to be displayed for the page.

You use HTML tags for headings, tables, lists, and other items on your pages. Style
sheets can also be used to define the presentation of items. If you use JDeveloper to
develop your application, you can select styles from a list.

The following sections describe the main elements used in the JSP pages of the sample
application:

* JSP Tags (page 4-8)

¢ Scriptlets (page 4-9)

e HTML Tags (page 4-9)

e HTML Forms (page 4-9)

4.3.1.1 JSP Tags

JSP tags are used in the sample application in this guide for the following tasks: to
initialize Java classes that hold the application methods and the JavaBean used to hold
a single employee record, and to forward the user to either the same or another page
in the application.

The j sp: useBean tag is used in pages to initialize the class that contains all the
methods needed by the application, and the j sp: f or war d tag is used to forward the
user to a specified page. You can drag the tags you need from the Component Palette
of JSP tags, and enter the properties for the tag in the corresponding dialog box that is
displayed.

4-8 Oracle Database 2 Day + Java Developer's Guide

http://www.oracle.com/technetwork/java/javaee/jsp/index.html
http://www.oracle.com/technetwork/java/javaee/jsp/index.html

Creating JSP Pages

4.3.1.2 Scriptlets

Scriptlets are used to run the Java methods that operate on the database and to
perform other processing in JSP pages. You can drag a scriptlet tag component from
the Component Palette and drop it onto your page, ready to enter the scriptlet code. In
JDeveloper, the code for scriptlets is entered in the Scriptlet Source Editor dialog box.

In this application, you use scriplets for a variety of tasks. As an example, one scriptlet
calls the Dat aHand| er method that returns a Resul t Set object containing all the
employees in the Enpl oyees table, which you can use to display that data in your JSP
page. As another example, a scriplet is used to iterate through the same Resul t Set
object to display each item in a row of a table.

4.3.1.3 HTML Tags

HTML tags are typically used for layout and presentation of the nondynamic portions
of the user interface, for example headings and tables. In JDeveloper, you can drag
and drop a Table component from the Component Palette onto your page. You must
specify the number of rows and columns for the table, and all the table tags are
automatically created.

4.3.1.4 HTML Forms

HTML forms are used to interact with or gather information from the users on Web
pages. The FORMelement acts as a container for the controls on a page, and specifies
the method to be used to process the form input.

For the filter control to select which employees to display, the enpl oyees. j sp page
itself processes the form. For login, insert, edit, and delete operations, additional JSP
pages are created to process these forms. To understand how the JSP pages in this
application are interrelated, refer to Figure 1-2 (page 1-5).

You can add a form in a JSP page by selecting it from the Component Palette of HTML
tags. If you attempt to add a control on a page outside of the form component or in a
page that does not contain a form, then JDeveloper prompts you to add a form
component to contain it.

4.3.2 Creating a Simple JSP Page

The following steps describe how to create a simple JSP page:

1. In the Application Navigator, right-click the View project and choose New from
the shortcut menu.

2. Inthe New Gallery, select the All Technologies tab.
3. Expand the Web Tier node from the Categories list and select JSP.

4. In the Items list, select JSP and click OK.

Querying for and Displaying Data 4-9

Creating JSP Pages

Figure 4-2 Creating a JSP Page

e New Gallery H
r All Technologies i/ Current Project Technologies |

(8

Categories: Items: [Shows &l Descriptions
------ WED SEFVICES

S Client Tier L
B . Launches the Create 15P dialog, in which you create a new skeleton 5P {.jsp or
----- ADF Deskbop Integration 4 :

Jjsp) file,

----- ADF Swing
----- Extension Development To enable khis option, you must select a project or a file within a project in the
...... Swing/ AT Application Nawvigatar,

[=h-Database Tier 5P Segment
----- Database Files
----- Database Objects J5P Tag File
----- Offline Database Objects ;

- Web Tier J5P Tag File Segment:
----- Applet 'B JSP Tag Library
----- Facelsts
..... HTML
..... JSF
----- Serviets
----- Struts

-l Tkemns

[teb |

Ok | | Caneel

The Create JSP dialog box is displayed.

5. On the Create JSP dialog box, enter enpl oyees. j sp in the File Name text box and
click OK. The new page opens in the JSP/HTML Visual Editor and is ready for you
to start adding text and components to your web page.

4.3.3 Adding Static Content to a JSP Page

JDeveloper provides the Component Palette and the Property Inspector on the right
hand side of the JSP/HTML Visual Editor. You can also use the JSP Source Editor by
clicking the Source Editor tab next to the Design tab at the bottom of the page. The
Component Palette enables you to add components to the page and the Property

Inspector enables you to set the properties of the components. A blank page in the
Visual Editor is shown in Figure 4-3 (page 4-11).

4-10 Oracle Database 2 Day + Java Developer's Guide

Creating JSP Pages

Figure 4-3 Adding Content to JSP Pages in the JDeveloper Visual Source Editor

& Oracle JDeveloper - HRApp. jws @ view. jpr @ C:uDeveloperijdevimyworkHRAppwiewipublic_htmlemploye... [;If_!'-‘l__l['l_T_I
Eile Edt Vew Search MNavigste Run Debug Design Refactor Versgning Tools Window Help

FeEa O0-90- 90 YEH A4 A8 da- - E-DEFAEIN

Blostsrender.jovs |l employees.jsp | @l Javacient jova | | =] | component Palette

@l | | A& LB I U= E 3| comon

o)

=
INK

DL

| &@Page Directive - Property Insp... |

PE7 AOEN S

| Generd | — W
| AutoFkush trus
Buffer kb
| @ ContertType bextihtmlzcharset=w. ., | .
ErrorPage b
Extends
Imepark
Info]
IsELIgnored
| IsErrorPage False p
TaThce o diala [S, (S
<jspudirective.page> =
Design [Source [Hstory [4] IC
[ElLog
1| Devaloper|devimyworkiHRApp|view|view. jor Seb 4ff Wieb Eding

The following steps show how you can add text to the enpl oyees. j sp page. They
use the Visual Editor to modify the JSP. The Visual Editor is like a WYSIWYG editor
and you can use it to modify content.

1. With enpl oyees. j sp open in the Visual Editor, in the top line of your page, type
AnyCo Corporation: HR Application. From the list of styles at the top of the page,
on the left-hand side, select Heading 2.

Querying for and Displaying Data 4-11

Creating JSP Pages

Figure 4-4 Formatting a JSP

| DataHandler java | | JavaClient java employees.jsp

1y

EE = Show'lFuH ScraanSize'l@lNone | Default 'INone 'la HFBIUEZEEE

Co Corporation: HR A s

html « "> body > h2 7 any..

:Design Source | Bindings | Preview | History |

2. With the cursor still on the heading you added, from the Design menu select
Align, and then Center.

3. In a similar way, on a new line, type Employee Data, and format it with the
Heading 3 style. Position it on the left-hand side of the page.

4.3.4 Adding a Style Sheet to a JSP Page

You can add a style sheet reference to your page, so that your headings, text, and other
elements are formatted in a consistent way with the presentation features, such as the
fonts and colors used in the Web pages. You can add a style sheet to the page as

follows:

1. With enpl oyees. j sp open in the Visual Editor, click the list arrow at the top
right of the Component Palette, and select CSS.

4-12 Oracle Database 2 Day + Java Developer's Guide

Creating JSP Pages

Figure 4-5 Selecting a CSS File for the JSP

ﬁtomponent Palette | L%Resources E]
[1sp -

@E Expression
Fallback

[Forward

() GetProperty
(=] Hidden Comment
@ Include

@ Include Directive
[9 Page Directive
at] Param

ax] Params

2P Flugin

Scriptlet

85 SetProperty
@ Tadglib Directive

@ UseBean v

.@Employee Data - Property Inspector E]

B LB /(0)@
|| otext: |Empl0yee Data | ~

. From the CSS list, drag JDeveloper onto your page. As soon as you drag
JDeveloper onto your page, it will ask you to save the jdeveloper.css file. Save the
file in the same location as your JSP file. After you save the CSS file, it formats the
page with the JDeveloper styles. Figure 4-6 (page 4-13) shows the JSP Page with

the content added to it in the previous section and the JDeveloper stylesheet
applied to it.

Figure 4-6 Adding Static Content to the JSP Page

& Oracle JDeveloper - HRApp. jws : view.ipr : C:x\JDeveloperijdevimywork\HRAppiviewhpublic_htmbemploye... [S]B]E]
Eile Edt Wiew Search Mavigste Run Debug Design Refattor | Versioning | Teols Window Help

=200 0-0- 9® XAh 44 Allda- - d-DEAVAGEDN

Blostarandier java |G employeesiip | [Blsvachentsva | [~ | @ component palerte | E]-_
@ [None - ook ~hoe < |8 & £ B U= E | -
[[k Ovade
AnyCo Corporation: HR Application @ bl
Employee Data 8l eveloper
|
Gz - property Inspecter | =
AR AFPENF
| General [A
Hlign
=himi= =body= <h3> SiCore =
- 1
Design | Source | Hstory [4] » —
(Eltog
1\ Devaloper|jdevimywork|HEApplviswiview.jor | Inserting after H3 Seb 4 Web Ediing

Querying for and Displaying Data 4-13

Adding Dynamic Content to the JSP Page: Database Query Results

Note:

In JDeveloper version 10.1.3, you can associate a stylesheet with the JSP page
while creating it in the JSP Creation Wizard. The only difference is that you
need to browse and locate the stylesheet to be applied to the JSP page, instead
of just dragging and dropping it onto the page.

4.4 Adding Dynamic Content to the JSP Page: Database Query Results
This section includes the following subsections:
e Adding a JSP useBean Tag to Initialize the DataHandler Class (page 4-14)
e Creating a Result Set (page 4-15)

¢ Adding a Table to the JSP Page to Display the Result Set (page 4-17)

4.4.1 Adding a JSP useBean Tag to Initialize the DataHandler Class

Aj sp: useBean tag identifies and initializes the class that holds the methods that run
in the page. To add a j sp: useBean tag, follow these steps:

1. Open enpl oyees. j sp in the Visual Editor.

2. In the Component Palette, select the JSP set of components. Scroll through the list

and drag and drop UseBean to your page. The Insert UseBean dialog box is
displayed.

3. In the Insert UseBean dialog box, enter enpsbean as the ID. For the Class, click
Browse.... The Class Browser dialog box is displayed. Type hr . Dat aHandl er in
the Match Class Name text box. Click OK. Leave the Type and BeanName fields
blank and set the Scope to sessi on.

4. Click OK to create the tag in the page.

Figure 4-7 (page 4-14) shows the representation of the useBean tag in the
enpl oyees. j sp page.

Figure 4-7 useBean Representation in the employees.jsp File

w Oracle JDeveloper - HRApp. jws : view.jpr : C:\DeveloperijdevimyworkHRAppiviewipublic_htmite... [EIEE]
File Edk \iew Search Mavigate PRun Debug Design Refzctor Versioning Took indow Help

Gedd 0-9- 90 XEG /4 aBJda- - #-PEVHAE

[BloataHander java | il employeesise | (Bl avacient.java || i companent Palette =
16 |none v | Defaur e ~ B B LB F Y S EiAlJSP -
1 & Expression |
AnyCo Corporation: HR Application R Falback
Employee Data 09 Faryeard
& GetProperty
[Hidden Comment |-

@]}

1 JseBean - Property Inspector

2B aSELR
T

Emanhame Ij
@ Class hir.DataHandler =
=himl= =body= <jsp:usebeantempsheans [Soto Page pefirgion
Design | Saurce | Histary | €] o]
S
CH\eveloperlidevimyworkiHRApplvien view. jpr & webedting

4-14 Oracle Database 2 Day + Java Developer's Guide

Adding Dynamic Content to the JSP Page: Database Query Results

If you do not see the UseBean tag on the design view of the JSP, then go to Preferences
from the Tools menu, and select the Show Invisible JSP Elements option, which is
shown Figure 4-8 (page 4-15).

Figure 4-8 Preferences Window to Select JSP and HTML Visual Editor Options

é- Preferences u

- Emviranment

- BOF Mobile Browser
[+ ADF Swing

----- Ant

[Audit

[+ Business Components
[} Code Editor

----- Compare and Merge
----- Compiler

----- Credentials

----- (55 Editor

[+ Database

----- Data Controls Panel
[#- Debugger

----- Deployment

[#- Diagrams

----- Extensions

----- External Editor

----- File Types

----- Global Ignore List

----- Http Analyzer

----- JavaScript Editor

----- Java Yisual Editar

e,
i

[b |

J5P and HTML Visual Editor: Invisible Elements

[v] Show Content Gutside the Body Tag
Showe Invisible HTML Elements

HTML Elements

Shaws Comments

Shaw Anchars

Shaw Hidden Cantrols

[¥] Shaws Seript Tags

Showe Line Breaks

[+#] Show Inwvisible J5P Elements
J5P Elements
Show Tag Library Directives
Show Page Directives
Show Scripting Elements
Show Bean Tags
Show Hidden Custom Tags

oK | | Cancel

4.4.2 Creating a Result Set

The following steps describe how you can add a scripting element to your page to call
the get Al | Enpl oyees method and hold the result set data that is returned. This
query is defined in the Dat aHandl er class, and initialized in the page by using the

j sp: useBean tag.

1. Open the enpl oyees. j sp page in the Visual Editor. In the JSP part of the
Component Palette, select Scriptlet and drag and drop it onto the JSP page next to
the representation of the UseBean.

2. In the Insert Scriptlet dialog box, enter the following lines of code, which will call
the get Al | Enpl oyees method and produce a Resul t Set object:

Resul t Set rset;

rset = enpsbean. get Al | Enpl oyees();

Click OK. A representation of the scriptlet is displayed on the page as shown in
Figure 4-9 (page 4-16).

Querying for and Displaying Data 4-15

Adding Dynamic Content to the JSP Page: Database Query Results

Figure 4-9 Scriptlet Representation in a JSP Page

® Oracle JDeveloper - HRApp. jws : view. jpr : C:UDeveloper\jdevimywnork\HRAppYview\public_htmbe... [E])E)E]

Ele Edt ‘Wiew Search Mavigate Run Debug Design Refactor Versionig Took indow Help

G2dg 0-90- 90 LEEG A4 adda- - F-DEVAEE

IEDataimer-lava | Elemployees.ip | [l Javaclent.java | (=] | gl companent Palette | 3]
& (None * [pefau e - B H £ B S Y | 3
I 3P Plugin
AnyCo Corporation: HR Application (3} seriptiet
Employee Data $ setfroperty
B Taglb Directive
® LseBean QResultS... £ @ UseBean
@scriptlet - Property Inspector | |

rPBR7 BSES R
@ jspeScriptlet ResultSet rsat;rsst = ..

=himi= =body= <jsp:scriptiet> o
G0 to Paoe Defirition

4

Design | Source: | History Ii]
S

CilDevelopertjdev)

yweork)h view|view. jor

4 web Edting

3. Select the Source tab at the bottom of the Visual Editor to see the code that has

been created for the page so far. A wavy line under Resul t Set indicates that there
are errors in the code.

4. The Structure window on the left-hand side also indicates any errors in the page.
Scroll to the top of the window and expand the JSP Errors node. Figure 4-10
(page 4-16) shows how the error in the code is shown in the Structure window.

Figure 4-10 Viewing Errors in the Structure Window

Eemployees.jsp - Structure E]
4
=[] Errors £3)
@ Type ResultSet not found.
&) Mame empsbean not Found.
------ @ Methiod getalEnmplovess)) not Found in <unknc
- B <IDOCTYPE HTML PUBLIC "-{/W3C/{DTD HTML 4.0
: -[@ page
42 hkml
9--- head
----- meta - textfhtml; charset=windows-1252
b4 title
----- & link - jdeveloper.css
----- @ jspiuseBean - empsbean
=1 body
&% blockquaote
249 blockquate

- @% blackquaoke

&% blockquote
=@ blockquaote
=-4% blockquote
4% blockquote
-4 blackquate
B@» hz

=2-€% ha
A Employes Daka
- @ jspiuseBean - useBeanl

5. You must import the Resul t Set package. To do this, click the page node in the

Structure window to display the page properties in the Property Inspector on the
left side of the main editing area.

4-16 Oracle Database 2 Day + Java Developer's Guide

Adding Dynamic Content to the JSP Page: Database Query Results

6. Right-click inside the empty box to the right of the import property and click Edit.

The Edit Property: Import dialog box is displayed, which is shown in Figure 4-11
(page 4-17).

Figure 4-11 Importing Packages in JDeveloper

Edit Property: Import

Tao search, enter the name vou wank ko match, Use a quastion mark (73 to match
any single characker, or an asterisk (*) to match any number of characters,

search | Histatchy |
Match Class or Package MName:

Matching Classes and Packages:
(Mo matching items)

Help [ok J | Cancel |

7. Select the Hierarchy tab, expand the java node, then the sql node, and then select
ResultSet. Click OK.

On the Source tab, examine the code to see if the i nport statement has been added
to the code for your page. The error should disappear from the list in the Structure
window. Before continuing with the following sections, return to the design view
of the page by selecting the Design tab.

4.4.3 Adding a Table to the JSP Page to Display the Result Set

The following steps describe how you can add a table to the JSP page to display the
results of the get Al | Enpl oyees query:

1. If the enpl oyees. j sp page is not open in the Visual Editor, double-click it in the
Application Navigator to open it, and work in the Design tab. With the
enpl oyees. j sp file open in the Visual Editor, position the cursor after the
scriptlet and from the HTML Common page of the Component Palette, select the
Table component, which is shown in Figure 4-12 (page 4-18).

Querying for and Displaying Data 4-17

Adding Dynamic Content to the JSP Page: Database Query Results

Figure 4-12 Common HTML Components in the Component Palette

B Comparient Palette LejResource Pal... 2]
[HreL -|
@ ©

= Comman

&, anchor
‘a, Applet

[Email Link

(ﬁ Hyper Link
@ Image

&l Line Break
& Link

‘@ MoScript
Q Script
&l style

[Table

Farms

2. In the Insert Table dialog box, specify 1 row and 6 columns. Leave all Layout
properties as default. Click OK.

3. In the table row displayed on the page, enter text as follows for the headings for
each of the columns: First Name, Last Name, Email, Job, Phone, Salary. Use
Heading 4 to format the column names.

4. Add a scripting element for output, this time to display the values returned for
each of the columns in the table. To do this, select the table as follows. Position the
cursor on the top border of the table, and click when the cursor image changes to a
table image. From the JSP Component Palette, select Scriptlet. (You need not drag
the scriptlet into your table; it is inserted automatically.)

5. In the Insert Scriptlet dialog box, enter the following lines of code:

while (rset.next ())

{

out.println("<tr>");

out.println("<td>" +
rset.getString("first_name") + "</td><td> " +
rset.getString("last_name") + "</td><td> " +
rset.getString("email") + "</td><td> " +
rset.getString("job_id") + "</td><td>" +
rset.getString("phone_nunber") + "</td><td>" +
rset.getDoubl e("sal ary") + "</td>");

out.printin("</tr>");

}
6. Click OK.

The JSP page created is shown in Figure 4-13 (page 4-19).

4-18 Oracle Database 2 Day + Java Developer's Guide

Filtering a Query Result Set

Figure 4-13 Table in a JSP Page

@P_”None VIDeFauIt VINone V|% H LB I U == 3=
AnyCo Corporation: HR Application

I
g

Employee Data

|First Name |Las1 Hame Email |Joh |Phone Salary

4.5 Filtering a Query Result Set

You can filter the results of a query by certain parameters or conditions. You can also
allow users of the application to customize the data filter. In the sample application
created in this guide, the procedure of filtering the query result consists of the
following tasks:

1. Determining what filtered set is required

Users can specify the set of employee records that they want to view by entering a
filter criterion in a query field, in this case, a part of the name that they want to
search for. The enpl oyees. j sp page accepts this input through form controls,
and processes it.

2. Creating a method to return a query Resul t Set

The user input string is used to create the SQL query statement. This statement
selects all employees whose names include the sequence of characters that the user
enters. The query searches for this string in both the first and the last names.

3. Displaying the results of the query

This is done by adding code to the enpl oyees. j sp page to use the method that
runs the filtered query.

This section describes filtering query data in the following sections:
¢ Creating a Java Method for Filtering Results (page 4-19)

* Testing the Query Filter Method (page 4-20)

¢ Adding Filter Controls to the JSP Page (page 4-21)

¢ Displaying Filtered Data in the JSP Page (page 4-22)

4.5.1 Creating a Java Method for Filtering Results

The following steps describe how you can create the get Enpl oyeesByName method.
This method enables users to filter employees by their first or last name.

Querying for and Displaying Data 4-19

Filtering a Query Result Set

1. From the Application Navigator, open the Dat aHandl er . j ava class in the Java
Visual Editor.

2. After the get Al | Enpl oyees method, declare the get Enpl oyeesByNane method
as follows:

public ResultSet getEnpl oyeesByNane(String nane) throws SQLException {

}

3. Within the body of the method, add the following code to convert the name to
uppercase to enable more search hits:

nane = nane.toUpper Case();
4. Call the method to connect to the database:
get DBConnecti on();
5. Specify the Resul t Set type and create the query:

stm = conn. createStatenment (Resul t Set. TYPE_SCROLL_SENSI Tl VE,
Resul t Set . CONCUR_READ ONLY);

query =
"SELECT * FROM Enpl oyees WHERE UPPER(first_name) LIKE\'% + name + "%'" +
" OR UPPER(l ast _nane) LIKE\'9% + nane + "%' ORDER BY enpl oyee_id";

6. Print a trace message:
Systemout. println("\nExecuting query: " + query);

7. Run the query and return a result set as before:

rset = stnt.executeQuery(query);
return rset;

8. Save the file and compile it to ensure there are no compilation errors.

4.5.2 Testing the Query Filter Method

You can use the Javad i ent . j ava class created in Testing the Connection and the
Query Methods (page 4-5) to test the get Enpl oyeesByName method. You must add
the get Enpl oyeesByName method to display the query results as described in the
following steps:

1. Open the JavaC i ent . j ava class in the Java Source Editor.

2. After the result set displaying the results from the get Al | Enpl oyees query,
define a result set for the conditional query as follows:

rset = datahandl er. get Enpl oyeesByName("Ki ng");
Systemout.printin("\nResults fromquery: ");

while (rset.next())
Systemout. printlin
rset.getString(2)
rset.getString(3)
rset.getString(4)

{
(rset.getlnt(1) +" " +
+ +
+ "+

)

4-20 Oracle Database 2 Day + Java Developer's Guide

Filtering a Query Result Set

3.

To test your application at this stage, you can temporarily adjust the values of the
jdbcUr | ,useridand passwor d variables in the Dat aHandl er class to provide
the values required for the HR schema. Save the file, and compile it to check for
syntax errors.

Note:

Make sure you change the values of useri d, passwor d, and j dbcUr | back

tonul | after testing. For more information, refer to Declaring Connection-
Related Variables (page 3-12).

To test-run the code, right-click in the Java Source Editor and select Run from the
shortcut menu. In the Log window, you will first see the results of the

get Al | Enpl oyees method, then the results from the

get Enpl oyeesByNanme("xxx") query. Here, xxX is set to "King" to test the
filtering functionality. In actual operation, this parameter will be set to the value
provided by the user of the application to filter the search.

4.5.3 Adding Filter Controls to the JSP Page

To accept the filter criterion and to display the filter results, you must modify the
enpl oyees. j sp page. In the following steps, you add a form element and controls to
the enpl oyees. j sp page that accepts input from users to filter employees by name:

1.

With the enpl oyees. j sp page displayed in the Visual Editor, position the cursor
between the useBean tag and the scriptlet.

In the HTML Forms page of the Component Palette, select Form.

In the Insert Form dialog box, use the down arrow for the Action field and select
employees.jsp. Leave the other fields empty and click OK.

The form is displayed on the page in the Visual Editor, represented by a dotted-line
rectangle.

In the HTML Forms page of the Component Palette, scroll to Text Field. Select it
and drag and drop it inside the Form component. In the Insert Text Field dialog,
enter query as the value of the Name field and click OK. The text field box is
displayed within the form. This field enables users to enter filter criteria.

Position the cursor to the left of the Text Field and add the following text:
Filter by Employee Name:

In the HTML Forms page of the Component Palette, scroll to Submit Button. Select
it and drop it inside the Form component to the right of the Text Field.

In the Insert Submit Button dialog box, leave the Name field empty and enter
Fi | t er as the value of the Value field, and click OK.

Figure 4-14 (page 4-22) shows these HTML Form components in the
enpl oyees. j sp file.

Querying for and Displaying Data 4-21

Filtering a Query Result Set

Figure 4-14 HTML Form Components in the JSP Page

AnyCo Corporation: HR Application

Employee Data

‘ ‘Filter

|First Name |Last Name Email |Joh |Phone Salary

4.5.4 Displaying Filtered Data in the JSP Page

In the previous section, you created a text field component on the JSP page that
accepts user input. In this text field, users can specify a string with which to filter
employee names. You also added a submit button.

In the following steps, you add code to the scriptlet in the enpl oyees. j ava file to
enable it to use the get Enpl oyeesByNane method. This method is used only if a
user submits a value for filtering the results. If this filter criterion is not specified, the
get Al | Enpl oyees method is used.

1. Open the enpl oyees. j sp file in the Visual Editor.

2. Double-click the Scriptlet tag on the page (not the one inside the table) to open the
Properties dialog box. Modify the code as follows:

Resul t Set rset;
String query = request.getParameter("query");
if (query !'=null)

rset = enpshean. get Enpl oyeesByNane(query);
el se

rset = enpsbean. get Al | Enpl oyees();

Figure 4-15 (page 4-23) shows how you can use the Scriptlet Properties dialog box
to modify the code.

4-22 Oracle Database 2 Day + Java Developer's Guide

Adding Login Functionality to the Application

Figure 4-15 Using the Scriptlet Properties Dialog Box

@DataHandler.java I@Javaclient.java ampbyees.jsp] |Z|
E{ﬂh\lone vIDeFauIt vINone V|% HAB I USExEE Evz
AnyCo Corporation: HR Application

Employee Data

= UseBean

; ‘ ‘ ‘Filter‘

! Filter by Employee Name

& Results... | & Scriptlet Properties 3]

First MNarne Scin

W Rezultiet rset;

|| |5tring cquery = request.getParameter|Toquery”]:

if (cuery !'= rall && query '= null)
rset = empshean. getEnployeesByNane (query) ;
else
rset = ewpsbean., getdllEnployees();
| Help | Ok | | Cancel |
e L =l
=html= <hody= <jsp:sc | |
-

DesignlSource lHistory I 4 | | 4 I

3. Click OK.

4. Save the file.

4.6 Adding Login Functionality to the Application

The login functionality used in the sample application is a simple example of
application-managed security. It is not a full Java EE security implementation, but

simply used as an example in the sample application.

To implement this simple login functionality, you must perform the following tasks:

® Creating a Method to Authenticate Users (page 4-23)
* Creating a Login Page (page 4-25)

® Preparing Error Reports for Failed Logins (page 4-26)
¢ Creating the Login Interface (page 4-27)

.

Creating a JSP Page to Handle Login Action (page 4-28)

4.6.1 Creating a Method to Authenticate Users

In the following steps, you create a method in the Dat aHandl er . j ava class that
authenticates users by checking that the values they supply for the useri d and

passwor d match those required by the database schema.

Querying for and

Displaying Data 4-23

Adding Login Functionality to the Application

1. Open the Dat aHandl er . j ava class in the Source Editor.

2. Create a method called aut hent i cat eUser that checks if the useri d,
passwor d, and host values supplied by a user are valid:

public bool ean authenticateUser(String jdbcUrl, String userid, String password,
Htt pSessi on session) throws SQLException {

}

3. JDeveloper prompts you with a wavy underline and a message that you must
import a class for Ht t pSessi on. Press the Alt+Enter keys to import the
javax.servlet. http. H t pSessi on class.

4. Within the body of the method, assign the j dbcUr | , useri d, and password
values from the call to the attributes of the current object as follows:

this.jdbcUl=jdbcUrl;
this.userid = userid;
this.password = password,;

5. Attempt to connect to the database using the values supplied, and if successful,
return a value of t r ue. Enclose this in a t r y block as follows:

try {
O acl eDat aSour ce ds;

ds = new Oracl eDat aSource();

ds. set URL(j dbcUrl);

conn = ds. get Connection(userid, password);
return true;

See Also:

For information about using t r y and cat ch blocks, refer to Exception
Handling (page 5-21) in Updating Data (page 5-1).

6. To handle the case where the login credentials do not match, after the t r y block,
add a cat ch block. The code in this block prints out a log message and sets up an
error message. This error message can be displayed to the user if a login attempt
fails. The j dbcUr | ,useri d and passwor d variables are set back to nul | , and the
method returns the value f al se. To do this, enter the following code:

catch (SQLException ex) {
Systemout. printIn("Invalid user credentials");
session.setAttribute("l oginerrormsg", "lnvalid Login. Try Again...");
this.jdbcUrl = null;
this.userid = null;
this.password = null;
return fal se;

}

Example 4-4 Implementing User Validation

public bool ean authenticateUser(String jdbcUrl, String userid, String password,
Ht t pSessi on session) throws SQLException {

this.jdbcUl = jdbcUrl;
this.userid = userid;

4-24 Oracle Database 2 Day + Java Developer's Guide

Adding Login Functionality to the Application

this. password = password,;
try {
O acl eDat aSour ce ds;
ds = new Oracl eDat aSource();
ds. set URL(j dbcUrl);
conn = ds. get Connection(userid, password);
return true;
} catch (SQLException ex) {
Systemout. printIn("Invalid user credentials");
session.setAttribute("loginerrornsg", "Invalid Login. Try Again...");
this.jdbcUrl = null;
this.userid = null;
this.password = null;
return fal se;
1
}

The complete code is shown in Example 4-4 (page 4-24).

4.6.2 Creating a Login Page

The following steps create a| 0gi n. j sp page, on which users enter the login details
for the schema they are going to work on:

1. In the View project, create a new JSP page. Change the Name to | ogi n. j sp and
accept all other defaults. The new page opens in the JSP/HTML Visual Editor and
is ready for you to start adding text and components to your Web page.

2. Drag and drop the already saved JDeveloper style sheet to the page from the
Project CSS Files panel, which is shown in Figure 4-16 (page 4-26).

Querying for and Displaying Data 4-25

Adding Login Functionality to the Application

Figure 4-16 Project CSS Files Panel

3 component Palette LezjResource Pal. .]

|css -

é (5]
)
— Built In Pages
[k Bl
@ﬁ JDeveloper

[l oracle

“ Project 55 Files
% jdeveloper. css

@Link - jdeveloper.css - Property Inspector =)
IR 7 (&)@
Charset: | | ~
Class: | | ~
Dir: | <default = 'i it

o HRef: hdeveloper.css |V| ~
HR.efLang: | | ~
" | v
Lang: | |~
Media: | | ~
OnClick: | | ~
onbbiclick: | [~

3. Give the page the same heading as earlier, AnyCo Corporation: HR Application,
apply the Heading 2 style to it, and align it to the center of the page.

4. On the next line, enter Application Login, with the Heading 3 style applied. Align
this heading to the left-hand side of the page.

4.6.3 Preparing Error Reports for Failed Logins

The following steps add functions to the | ogi n. j sp page for displaying error
messages when a user login fails. The scriptlets and expression used in the

| ogi n. j sp page set up a variable to hold any error message. If the user login fails,
the connection method sets a message for the session. This page checks to see if there
is such a message, and if present, it displays the message.

1. With the | ogi n. j sp page open in the Visual Editor, position the cursor after the
text on this page. Then, from the JSP page of the Component Palette, drag and drop
the Scriptlet element from the palette onto the page.

2. In the Insert Scriptlet dialog box, enter the following code:
String loginerrormsg = null;
| oginerrormsg = (String) session.getAttribute("loginerrornsg");

if (loginerrormsg !'= null) {

3. Add another scriptlet in exactly the same way, and this time enter only a single
closing brace (}) in the Insert Scriptlet dialog box.

4-26 Oracle Database 2 Day + Java Developer's Guide

Adding Login Functionality to the Application

Place the cursor between the two scriptlets and press Enter to create a new line.
Apply the Heading 4 style to the new line.

With the cursor still on the new line, in the JSP page of the Component Palette, click
Expression.

In the Insert Expression dialog box, enter | ogi ner r or nsg.

To see the code that has been added to your logi n. j sp page, below the Visual
Editor, select the Source tab. The code should appear as follows:

<%
String loginerrormsg = null;
loginerrormsg = (String) session.getAttribute("loginerrornsg");
if (loginerrormsg != null) {

%

<h4>

<% | oginerrornmsg %

</ h4>

<%

}

%

Before continuing with the following sections, return to the design view of the page by
selecting the Design tab.

4.6.4 Creating the Login Interface

In these steps, you add fields to the | 0gi n. j sp page on which users enter their login
details.

1.

If the | ogi n. j sp page is not open in the Visual Editor, double-click it in the
Application Navigator to open it, and check that the Design tab is selected.

Position the cursor after the second scriptlet and select Form in the HTML Forms
page of the Component Palette. In the Insert Form dialog box, enter

| ogi n_act i on. j sp as the value for the Action field. This file will be used to
process the user input in the login.jsp file. (You cannot select this page from a list
as it is not created yet.) Leave the other fields empty and click OK.

The Form is displayed on the page in the Visual Editor, represented by a dotted
rectangle.

Add a Table to the page. Position it inside the Form. Specify a 3-row and 2-column
layout, and accept other layout defaults.

In the first column of the three rows, enter the following as the text to display for
users:

User ID:
Password:

Host:
From the HTML page of the Component Palette, drag a Text Field into the table
cell to the right of the User ID: cell. In the Insert Text Field dialog box, enter

user i d as the value of the Name property. Leave the other fields empty and click
OK.

Querying for and Displaying Data 4-27

Adding Login Functionality to the Application

6. In the same way, add a Text Field to the table cell to the right of the Password: cell

and enter passwor d as the value of the Name property. Similarly, add a Text Field
to the table cell to the right of the Host: cell and enter host as the value of the
Name property.

Drag a Submit button to the Form below the table. Enter Submi t for the Value
property of the button.

Your | 0gi n. j sp page should now appear as shown in Figure 4-17 (page 4-28).

Figure 4-17 Login Page

@ DataHandler.java Jog\.'\'?. jsp @ JavaClient.java emplovees. jsp |I|E|

00
%Ioziner...

i ||Password: ‘ ‘

|He.ading « « | DeFaule vlwore » |8 8 £ B J U i= = i

User ID: ‘ ‘

Host: ‘ ‘

Submit‘

=htrnl= =body= =h4= <jspescriptiet=

l

Design | Source | History |<| | 4 I

4.6.5 Creating a JSP Page to Handle Login Action

In the following steps, you create the | ogi n_act i on. j sp page, whichis a
nonviewable page that processes the login operation.

1.

Create a JSP page and call it| ogi n_acti on. j sp. Accept all default settings for
the JSP page.

With | ogi n_act i on. j sp open in the Visual Editor, click and select the Page
Directive on the top left corner of the page. The Property Inspector now shows the
properties of the Page Directive.

Click the down arrow next to the Import field. The Edit Property: Import dialog
box is displayed. Select the Hierarchy tab and then select Resul t Set after
extending Java and SQL folders respectively. Click OK.

Drag a jsp:usebean tag onto the page. Enter enpsbean as the ID and browse to
select hr.DataHandler as the Class. Set the Scope to sessi on, and click OK.

Position the cursor after the useBean tag and add a Scriptlet to the page. Enter the
following code into the Insert Scriptlet dialog box and click OK.

bool ean userlsValid = fal se;

String host = request.getParaneter("host");

String userid = request.getParaneter("userid");
String password = request.get Paraneter ("password");

4-28 Oracle Database 2 Day + Java Developer's Guide

Testing the JSP Page

String jdbcUrl = "jdbc:oracle:thin:@ + host + ":1521: ORACLE";
userlsValid = enpsbean. aut henti cateUser (j dbcUrl, userid, password, session);

6. Add another Scriptlet, and add the following code to it:
if (userlsvalid){

7. In the JSP page of the Component Palette, find Forward and drag it onto the page
to add a jsp:forward tag onto the page. In the Insert Forward dialog box, enter
employees.jsp as the value of the Page* field.

8. Add another scriptlet, and enter the following code:

} else {
9. Add another jsp:forward tag, and this time move forward to | ogi n. j sp.
10. Add a final Scriptlet, and enter a closing brace (}).

11.Save your work.

To see the code that has been added to | ogi n_act i on. j sp, select the Source tab.
The code displayed is similar to the following:

<body>

<%@ page inport="java.sql.Resul t Set"%<j sp: useBean i d="enpshean"”
class="hr. Dat aHandl er"
scope="session"/ >

<%ool ean userlsValid = fal se;

String host = request. get Parameter("host");

String userid = request.getParaneter("userid");

String password = request.get Parameter("password");

String jdbcUrl = "jdbc:oracle:thin:@ + host + ":1521: ORACLE";

userlsValid = enpsbean. aut henti cateUser (j dbcUrl, userid, password, session);% <

% f (userlsValid){%-<jsp:forward page="enpl oyees.jsp"/>

<% f (userlsValid){%-<]sp:forward page="login.jsp"/><%%

</ body>

4.7 Testing the JSP Page

To test the login page and the filtering of employees, do the following:

1. Inthe Application Navigator, right-click the view project, and select Run.

You may be prompted to specify a Default Run Target for the project. For now, set
this to | 0gi n. j sp. You can later change the project properties for the default run
target page to be any page of your choice.

The login page is displayed in your browser, as shown in Figure 4-18 (page 4-30).

Querying for and Displaying Data 4-29

Testing the JSP Page

Figure 4-18 Login Page for Sample Application in the Browser

2 login - Mozilla Firefox
File Edit Wew History Bookmarks Tools Help

% - @ O @ O reios][p]
AnyCo Corporation: HR Application

Application Login

User ID: | |

Password: | |

‘Hust: “ |

Submit

Dione

2. Enter the following login details for your database, and then click Submit.
User ID: HR
Password: hr
Host: | ocal host

The Enpl oyee. j ava file is displayed in your browser as shown in Figure 4-19
(page 4-31).

4-30 Oracle Database 2 Day + Java Developer's Guide

Testing the JSP Page

Figure 4-19 Unfiltered E

mployee Data in employee.jsp

%3 employees - Mozilla Firefo

b4

File Edit iew Hiskory Bookmarks Tools Help
<« - - @ ﬁ [http:ff10.177.237.254: 8988 /HRApp-view-context-rootflogin_ac | * | [
AnyCo Corporation: HR Application
Employee Data
Filter by Employee Mame
First Name Last Name |Email Job Phone Salary
|steven |King |[SKING |sD_PRES [515.1234567 |24000.0
[Neena [Kochhar [NKOCHHAR 4D WP |515.123 4568 |[17000.0
|Lex |[DeHaan [LDEHA&N [AD_vP 315.123.4569 |[17000.0
|slexander [[Hunold [AHUNOLD | T_PROG |580423.4567 (3000.0
|Bruce |Ernst [BERNST |T_PROG [390.4234568 [B00D0.O
|Dawid lausin - [DaUSTIN |IT_PROG 3904234568 |[4800.0
|vali |Pataballa [VPATABAL |IT_PROG 3904234560 [4800.0
|Diana |Lorentz |[DLORENTZ |IT_PROG |[380423.5567 |[4200.0
[Mancy |Greenbery [NGREEMEE [FI_MGR |515.124 4568 |[12000.0
[Daniel [Faviet |DFAVIET |FILACCOUNT [515.124.4163 [3000.0
[dohn |chen [JCHEN [Fl_ACCOUNT |[515.1244269 (82000 ||
Done

3. Enter a string of letters by

which you want to filter employee data. For example,

enter i ng in the Filter by Employee Name field, and click Filter. A filtered list is
displayed, which is shown in:

Querying for and Displaying Data 4-31

Testing the JSP Page

Figure 4-20 Filtered Employee Data in employee.jsp

AnyCo Corporation: HR Application

Employee Data

Filter by Ernployee name: | [Filter |

First Name | Last Name | Email Job Phone 'Salary

|Steven |King |SKING |AD_PRES |515.123 4567 24000.0
Payam Kaufing || PKAUFLIN |ST_MAN |850.123.3234 79000

Janette |King JKING |SA_REP |01144.1345428268 100000
Jack Livingston |JLIVINGS |SA_REP |01144.1844 429264 | 8400.0

Julia Deliinger | JDELLING | SH_CLERK |650.509.3876 134000

[>

4-32 Oracle Database 2 Day + Java Developer's Guide

5

Updating Data

In this chapter, you will see how you can modify the sample application and add
functionality that enables users to edit, update, and delete data in Oracle Database.
This chapter includes the following sections:

¢ Creating a JavaBean (page 5-1)

¢ Updating Data from a Java Class (page 5-4)

¢ Inserting an Employee Record (page 5-13)

* Deleting an Employee Record (page 5-18)

* Exception Handling (page 5-21)

* Navigation in the Sample Application (page 5-23)

5.1 Creating a JavaBean

In outline, a bean is a Java class that has properties, events and methods. For each of
its properties, the bean also includes accessors, that is get and set methods. Any
object that conforms to certain basic rules can be a bean. There is no special class that
has to be extended to create a bean.

In the steps for creating a sample application in this chapter, a JavaBean is used to
hold a single employee record. When a user wants to edit an existing record or add a
new one, it is used as a container to hold the changed or new values for a single row of
a table to prepare the row for using to update the database.

The bean contains properties for each field in an employee record, and then
JDeveloper creates the accessors (get and set methods) for each of those properties.
You will see how to create a JavaBean for the sample application in the following
subsections:

* Creating a JavaBean in JDeveloper (page 5-1)

¢ Defining the JavaBean Properties and Methods (page 5-2)

5.1.1 Creating a JavaBean in JDeveloper

Enpl oyee. | ava is the JavaBean that is used in the sample application to hold a
single employee record and modify its contents. To create a JavaBean, do the
following:

1. Right-click the View project, and from the shortcut menu, click New.

2. In the New Gallery dialog box, select the All Technologies tab.

Updating Data 5-1

Creating a JavaBean

3. Expand the General category and select Java in the General category. From the
Items list, select Bean. Click OK.

Figure 5-1 Creating a Java Bean

é- Mew Gallery E

r All Technologies i/ Current Project Technologies |

(@
Categories: Items: [Shows Al Descriptions
-General [Java Class

----- Applications

..... Ank Java Interface

----- Connections

----- Deployment Descripkors
----- Deployment Profiles
----- Diagrams

va

[=-Business Tier

L. ADF Business Comnponents
----- Business Inteligence

----- Data Controls

----- Security
----- TopLinkfJPa
----- Weh Servires

[{fil Java Package
=1 Annotation

[Bean

Opens the Create Bean dialog, in which vou assign a name and a package to

vaour bean and define the class it extends.

To enable this option, vwou must select a project or a file within a project in

the Application Mavigator,
[Beaninfo
] customizer
[piglag
I:l Enurn

L teb |

oK J | Cancel

4. In the Create Bean dialog box, enter Enpl oyee as the name, hr as the package, and
ensure that the Extends: field is set to j ava. | ang. Obj ect . Click OK to create the

bean.

5. Save the file. The Enpl oyee. j ava file should now contain the following code:

package hr;

public class Enployee {
public Enpl oyee(){
}

}

5.1.2 Defining the JavaBean Properties and Methods

In the JavaBean, you must create one field for each column in the Enpl oyees table,

and accessor methods (get and set methods) for each field.

1. Add animport statement for j ava. sql . Dat e, which is the field type for one of

the fields:

import java.sql.Date;

2. Add afield to the Enpl oyee class for each of the columns in the Enpl oyees
table. Each field is pri vat e, and the field types are as follows:

private Integer enployeel
private String firstNang;
private String |astName;
private String email;

d;

private String phoneNunber;

private Date hireDate;

5-2 Oracle Database 2 Day + Java Developer's Guide

Creating a JavaBean

private String jobld;
private Doubl e salary;
private Doubl e comm ssionPct;
private Integer departnentld;

Right-click the Source Editor page and select Generate Accessors from the
shortcut menu. In the Generate Accessors dialog box, select the top-level
Employee node. A check mark is displayed for that node and for all the fields.
Click OK. Figure 5-2 (page 5-3) shows the Generate Accessors dialog box with
all the fields selected.

Figure 5-2 Generate Accessors Dialog Box

é- Generate Accessors m

Field Prefix: |:| | Refresh |

Methods:

SR Eriployee
E| g employeeld : Integer

setEmplovesldiInteger) | woid

{¥] getEmplayeeld() : Integer

g firstMame : Skring

setFirstMame(String) ¢ void Deselect Al

getFirstiame() : Skring

E-{¥] g lastMame : String
setLastMarne(String) © void
getLastMame() : String

E-{¥] @ email: String

[setEmail{String) : woid
qgetErnail() « String

a phonefumber : String

-] setPhaneMumber{String) : void

Scope: |puhlic v| Modifiers: [] final [] synchronized

In setter methods:

[Matify listeners when property changes
[Praperty change is vetoable

| Help | | OF J | Cancel |

Save the file. The Enpl oyee. j ava file should now contain the following code:
Skeleton Code for a Basic Java Bean with Accessor Methods

package hr;
import java.sql.Date;

public class Enployee {
public Enployee() {
}
private Integer enployeeld;
private String firstNang;
private String |astNane;
private String email;
private String phoneNunber;
private Date hireDate;
private String jobld;
private Double salary;
private Doubl e conmi ssionPct;
private Integer departnentld;

public void setEnpl oyeel d(Integer enployeeld) {
this. enpl oyeel d = enpl oyeel d;
}

Updating Data 5-3

Updating Data from a Java Class

public Integer getEnployeeld() {
return enpl oyeel d;
}

public void setFirstName(String firstName) {
this.firstName = firstNane;
1

public String getFirstName() {
return firstNang;
1

/1 This list has been shortened and is not conprehensive.
/1 The actual code contains accessor methods
/1 for all the fields declared in the bean.

public void setDepartmentld(Integer departmentld) {
this.departnmentld = departnentld;

}

public Integer getDepartnentld() {

return departmentld;
}

}

5.2 Updating Data from a Java Class

Updating a row in a database table from a Java application requires you to do the
following tasks:

1.

Create a method that finds a particular employee row. This is used to display the
values for a particular employee on an edit page.

Create a method that takes the updated employee data from the bean and updates
the database.

. On the main application page, in every row of employee data, include a link that

enables a user to edit the data for that employee. The links take the user to the
edi t. j sp file with the data for that employee displayed, ready for editing.

Create a JSP page called edi t . j sp, that includes a form and a table to display all
the data of a single employee and enables a user to change the values.

Create a JSP page that processes the form on the edi t . j Sp page, writes the
updated values to the Enpl oyee. j ava bean and calls the updat eEnpl oyee
method.

You will see how to do this in the following sections:

Creating a Method to Identify an Employee Record (page 5-5)
Creating a Method to Update Employee Data (page 5-6)
Adding a Link to Navigate to an Update Page (page 5-8)

Creating a JSP Page to Edit Employee Data (page 5-10)

5-4 Oracle Database 2 Day + Java Developer's Guide

Updating Data from a Java Class

Creating a JSP Page to Handle an Update Action (page 5-12)

5.2.1 Creating a Method to Identify an Employee Record

The method you create in these steps is used to find the record for a particular
employee. It is used when a user wants to edit or delete a particular employee record,
and selects a link for that employee on the Enpl oyee. j ava page.

1.

If the Dat aHandl er class is not already open in the Java Source Editor, double-
click it in the Application Navigator to open it.

In the Dat aHandl er class, declare a new method that identifies the employee
record to be updated:

public Enpl oyee findEnpl oyeeByld(int id) throws SQLException {

}

Within the body of this method, create a new instance of the Enpl oyee bean called
sel ect edEnp.

Enmpl oyee sel ect edEnp = new Enpl oyee();
Connect to the database.
get DBConnecti on();

Create a St at ement object, define a Resul t Set type, and formulate the query.
Add a trace message to assist with debugging.

stnt =
conn. creat eSt at ement (Resul t Set . TYPE_SCROLL_SENSI Tl VE,
Resul t Set . CONCUR_READ ONLY) ;
query = "SELECT * FROM Enpl oyees WHERE enpl oyee_id =" +id,;
Systemout. println("\nExecuting: " + query);

Run the query and use a ResultSet object to contain the result.
rset = stnt.executeQuery(query);

Use the result set returned in r set to populate the fields of the employee bean
using the set methods of the bean.

while (rset.next()) {
sel ect edEnp. set Enpl oyeel d(new | nteger(rset.getlnt("enployee_id")));
sel ect edEnp. set First Nane(rset.getString("first_nane"));
sel ect edEnp. set Last Name(rset. get String("last_name"));
sel ect edEnp. set Emai | (rset.getString("email"));
sel ect edEnp. set PhoneNunber (rset. get String(" phone_number"));
sel ect edEnp. set HireDat e(rset. getDate("hire_date"));
sel ect edEnp. set Sal ary(new Doubl e(rset. get Doubl e("sal ary")));
sel ect edEnp. set Jobl d(rset.getString("job_id"));
}

Return the populated object.

return sel ect edEnp;

Updating Data 5-5

Updating Data from a Java Class

5.2.2 Creating a Method to Update Employee Data

In the following steps, you will see how to create a method to update employee data in
the database:

1. Open the Dat aHandl er class.
2. Declare an updat eEnpl oyee method as follows:

public String updateEnpl oyee(int enployee_id, String first_nane,
String last_nane, String email,
String phone_nunber, String salary,
String job_id) throws SQLException {

}

3. Within the body of this method, create an instance of the Enpl oyee bean,
containing details for the selected employee:

Enmpl oyee ol dEnpl oyee = fi ndEnpl oyeeByl d(enpl oyee_i d);
4. Connect to the database.
get DBConnect i on();
5. Create a St at ement object and specify the Resul t Set type as before.

stnt =
conn. creat eSt at ement (Resul t Set . TYPE_SCROLL_SENSI Tl VE,
Resul t Set . CONCUR_READ ONLY);

6. Create a Stri ngBuf f er to accumulate details of the SQL UPDATE statement that
needs to be built:

StringBuffer colums = new StringBuffer(255);

7. For each field in an employee record, check whether the user has changed the value
and if so, add relevant code to the St ri ngBuf f er . For each item added after the
first one, add a comma to separate the items. The following code checks if the
first_name variable changed, and if so, adds details to the SQL in the
St ri ngBuf f er that will be used to update the database:

if (first_name !'= null &&
'first_nane. equal s(ol dEnpl oyee. get FirstName()))
{

colums. append("first_nane = '" + first_name + "'");

}

For the | ast _nane, before appending the new last name, check to see whether
there are already some changes in the St r i ngBuf f er and if so, append a comma
to separate the new change from the previous one. Use the following code:

if (last_name != null &&
'l ast _nane. equal s(ol dEnpl oyee. get Last Name())) {
if (colums.length() >0) {
col ums. append(", ");

}

col umms. append("last_name = '" + last_name + "'");

}

Use the same code logic to check for changes made to emui | , and phone_numnber.

5-6 Oracle Database 2 Day + Java Developer's Guide

Updating Data from a Java Class

Note:

Only significant parts of the code are included within this procedure.
Example 5-1 (page 5-7) contains the complete code for this method.

For the sal ary field, obtain a St ri ng value to add to the St ri ngBuf f er as
follows:

if (salary !'=null &&
I'sal ary. equal s(ol dEnpl oyee. getSal ary().toString())) {
if (colums.length() >0) {
colums. append(", ");

}

col ums. append("salary ="'" + salary + "'");

8. When the whole set of changes has been assembled, check to see whether there are
in fact any changes, that is, whether the St r i ngBuf f er contains anything. If so,
construct a SQL UPDATE statement using the information in the St r i ngBuf f er
and execute it. If the StringBuffer does not contain any changes, output a message
saying so:

if (colums.length() >0)
{
sql String = "update Enpl oyees SET " + colums.toString() +
" WHERE enployee_id =" + enpl oyee_id,
Systemout. println("\nExecuting: " + sgl String);
stnt. execute(sql String);

}
el se
{
Systemout.printIn("Nothing to do to update Enployee Id: " +
enpl oyee_id);
}

9. Return the word "success".
return "success";

10. Save your work and make the file to check there are no syntax errors.

Example 5-1 Method for Updating a Database Record

public String updat eEnpl oyee(int enployee_id, String first_nane,
String last_nane, String email,
String phone_nunber, String salary,
String job_id) throws SQLException {

Enpl oyee ol dEnpl oyee = findEnpl oyeeByl d(enpl oyee_i d);

get DBConnection();

stnt = conn. createStat ement (Resul t Set. TYPE_SCROLL_SENSI Tl VE,
Resul t Set . CONCUR_READ ONLY);

StringBuffer colums = new StringBuffer(255);
if (first_name !'= null &&

I'first_nane. equal s(ol dEnpl oyee. get FirstNane()))
{

colums. append("first_name ='" + first_name + "'");
1
if (last_name != null &&

'l ast _nane. equal s(ol dEnpl oyee. get Last Name())) {

Updating Data 5-7

Updating Data from a Java Class

if (colums.length() >0) {
col ums. append(", ");
}
col ums. append("last_name = '" + |ast_name + """);
1
if (email !'=null &&
lemai | . equal s(ol dEnpl oyee. getEmail ())) {
if (colums.length() >0) {
colums. append(", ");
}
colums. append("email ="'" + emil +"'");
1
if (phone_nunber != null &&
' phone_nunber . equal s(ol dEnpl oyee. get PhoneNunber ())) {
if (colums.length() >0) {
col ums. append(", ");
}
col ums. append("phone_nunmber = '" + phone_nunber + "'");
1
if (salary !'=null &&
I'sal ary. equal s(ol dEnpl oyee. get Sal ary().toString())) {
if (colums.length() >0) {
col ums. append(", ");
}
col ums. append("salary ="'" + salary + """);
1
if (job_id!=null &&
'job_id.equal s(ol dEnpl oyee. getJobld())) {
if (colums.length() >0) {

col ums. append(", ");
}col ums. append("job_id ='" +job_id + """);
1
if (colums.length() >0)
{sql String =

"UPDATE Enpl oyees SET " + colums.toString() +

" VWHERE enployee_id = " + enployee_id;
Systemout. printIn("\nExecuting: " + sql String);
stnt. execute(sql String);

1
el se
{
Systemout.printIn("Nothing to do to update Enployee Id: " +
enpl oyee_id);
1
return "success";

}

Example 5-1 (page 5-7) contains the complete code for this method.

5.2.3 Adding a Link to Navigate to an Update Page

In the following steps, you add a link to each row of the employees table on the
enpl oyees. j sp page, that users will click to edit that row.

1. Open enpl oyees. j sp in the Visual Editor.

2. Add an extra column to the table that displays employee details. To do this,
position the cursor in the last column of the table, right-click and select Table from

5-8 Oracle Database 2 Day + Java Developer's Guide

Updating Data from a Java Class

the shortcut menu, then select Insert Rows Or Columns. In the Insert Rows or
Columns dialog box, select Columns and After Selection and click OK.

. This extra column will contain the link that reads Edit for each row. Each of these
links leads to a separate page where the selected employee record can be edited. To
do this, double-click the scriptlet that is inside the Enpl oyees table, to display the
Scriptlet Properties dialog box.

. Modify the scriptlet to include a link to the edi t . j sp page. The modified scriptlet
should contain the following code:

while (rset.next ())

{

out.println("<tr>");
out.println("<td>" +
rset.getString("first_name") + "</td><td> " +
rset.getString("last_name") + "</td><td> " +
rset.getString("email") + "</td><td> " +
rset.getString("job_id") + "</td><td>" +
rset.getString("phone_nunber") + "</td><td>" +
rset.get Doubl e("sal ary") +
"</td><td> <a href=\"edit.jsp?enpid=" + rset.getlnt(1) +
"\">Edit</td>");

out.println("<tr>");

}

When the edit link is clicked for any employee, this code passes the employee ID to
the edi t . j sp page, which will handle the employee record updates. The

edi t . j sp page will use this to search for the record of that particular employee in
the database.

. Save enpl oyees. j sp. Figure 5-3 (page 5-10) shows enpl oyees. j sp when it is

run and displayed in a browser, illustrating the link users can click to edit
employee data.

Updating Data 5-9

Updating Data from a Java Class

Figure 5-3 Link to Edit Employees in employees.jsp

P @empoyess i & - = - [pags - @ Took - 7
AnyCo
Corporation:
HR
Application
Employee Data
Filter by Employee Name | M
First Hame Last Name Email Joh Phone Salary
Steven King SKING AD_FRES 515.123 4567 24000.0 Edit
MNeena Kochhar NKOCHHAR AD_WP 515.123 4568 17000.0 Edit
Lex De Haan LDEHAAN AD_WP 515.123 4569 17000.0 Edit
Alexander Hunold AHUMOLD [T_PRGG 590423 4567 gq000.0 Edit
Bruce Ernst BERNST IT_FPRCG 590423 4568 §000.0 Edit
Dizvid Austin DALSTIN IT_PROG 5904234569 4300.0 Edit
Walli Pataballa YPATABAL IT_FPRGG 590423 4560 4800.0 Edit
Diana Larentz DLORENTZ IT_FPRCG 590423 5567 4200.0 Edit
MNancy Greenberg NGREEMNEE FI_MGR 515.124 4569 12008.0 Edit
Daniel Faviet DFAVIET FI_ACCOUNT 515.124 4169 3000.0 Edit
Jahn Chen JCHEN FI_ACCOUNT 515.124 4269 8200.0 Edit
|smael Sciarra ISCIARRA FI_ACCOUNT 515.124 4369 7700.0 Edit
Jose Manuel | Urman JMURMAMN FI_ACCOUNT 515.124 44649 000 Edit ﬂ
Done € Internet 3 100% -

5.2.4 Creating a JSP Page to Edit Employee Data

In this section, you will create the edi t . j sp file that enables users to update an
employee record.

1.

2.

Create a new JSP page and name it edi t . j sp. Accept all other defaults.

Give the page the same heading as earlier, AnyCo Corporation: HR Application,
apply the Heading 2 style to it, and align it to the center of the page.

On the next line, type Edit Employee Record, with the Heading 3 style applied.
Align this heading to the left of the page.

Add the JDeveloper style sheet to the page.

Add aj sp: usebean tag. Enter enpsbean as the ID, and hr . Dat aHandl er as
the Class. Set the Scope to sessi on, and click OK.

Position the cursor after the useBean tag and add another j sp: usebean tag. This
time enter enpl oyee as the ID, browse to select hr.Employee as the class, and
leave the Scope as page. Click OK.

Add a Scriptlet to the page. The scriptlet code passes the employee ID to the
fi ndEnpl oyeeByl d method and retrieves the data inside the Enpl oyee bean.
Enter the following code in the Insert Scriptlet dialog box:

5-10 Oracle Database 2 Day + Java Developer's Guide

Updating Data from a Java Class

10.

11.

12.

13.

14.

15.

16.

I nteger enployee_id = new I nteger(request.getParanmeter("empid"));
enpl oyee = enpshean. fi ndEnpl oyeeByl d(enpl oyee_i d. i nt Val ue());

Add a Form to the page. In the Insert Form dialog, enter updat e_act i on. j sp for
the Action field. You cannot select this page from the list as you have not yet
created it.

Add a Table to the page. Position it inside the Form. Specify a 6-row and 2-column
layout, and accept other layout defaults.

In the first column, enter the following headings, each on a separate row: Fi r st
Nane, Last Nane, Emai | ,Phone, Job, Mont hly Sal ary.

Drag a Hidden Field component from the HTML Forms page of the Component
Palette. Drop it in the second column, adjacent to the First Name heading. In the
Insert Hidden Field dialog, enter enpl oyee_i d as the Name property and enter <
% enpl oyee. get Enpl oyeel d() % as the Value property.

Drag a Text Field component to this column, adjacent to the First Name heading.
In the Insert Text Field dialog, enter f i r st _nane in the Name field, and <%
enpl oyee. get Fi r st Name() % in the Value field. Click OK.

Drag a second Text Field component to this column, adjacent to the Last Name
heading. In the Insert Text Field dialog, enter | ast _narne in the Name field, and <
% enpl oyee. get Last Nane() % in the Val ue field. Click OK.

In a similar way, add text fields adjacent to each of the remaining column headings,
using emai |, phone_nunber,j ob_i d, and sal ary as the field names and the
corresponding getter method for each field. These are specified in the following
table.

Name Field Value Field

emai | <% enpl oyee. getEmai |l () %
phone_nunber <% enpl oyee. get PhoneNunber () %
job_id <% enpl oyee. get Jobl d() %

sal ary <% enpl oyee. get Sal ary() %

Add a Submit button in the form, below the table. Enter Updat e as its Value.
Save the application.

The resultant edi t . j sp page should look similar to the page shown in Figure 5-4
(page 5-12).

Updating Data 5-11

Updating Data from a Java Class

Figure 5-4 Creating a JSP Page to Edit Employee Details

@Employee.java _@DataHandler.java 'Iogin.jsp edit_emp.jsp] empll |E|Z|
Glﬁ|Paragraph vIDeFauIt vINone V|% @\ (ﬁ B I U = = 9 &

L]

[®uUseBean| |[®uUseBean| |
5
First Mame =%= employee.getFirstiame) %= N
Last Mame =%= employee.getLastMame() %=
Ermnail =%= employee.getEmail) %=
Phone =%= employee.getPhoneMumberd %=
Job =%= employee.getloblDi) %=
Maonthly Salary <%= employee. get3alan %=

‘ ‘Update‘

=html= <hody= <form= =p= <input>

l

Design | Source | History { b | | 4 I

5.2.5 Creating a JSP Page to Handle an Update Action

In this section, you will see how to create the updat e_act i on. j sp file. This page
processes the form on the edi t . j sp page that enables users to update an employee
record. There are no visual elements on this page, this page is used only to process the
edi t. | sp form and returns control to the enpl oyees. j sp file.

1. Create a new JSP page and call it updat e_act i on. j sp. Accept all other defaults
for the page in the JSP Creation Wizard.

2. Click and select the Page Directive on the top left corner of the page. The Property
Inspector now shows the properties of the Page Directive.

3. Click the down arrow next to the Import field. The Edit Property: Import dialog
box appears. Select the Hierarchy tab and then select Resul t Set after extending
Java and SQL folders respectively. Click OK.

4. Add a jsp:usebean tag. Enter enpsbean as the ID, and hr . Dat aHandl| er as the
Class. Set the Scope to sessi on, and click OK.

5. Add a Scriptlet to the page. Enter the following code into the Insert Scriptlet dialog
box:

Integer enployee_id = new I nteger(request.getParaneter("enployee_id"));
String first_nanme = request.get Parameter ("first_nanme");

String |ast_name = request.getParameter("last_nanme");

String emai|l = request.getParameter("email");

String phone_nunber = request. get Paraneter (" phone_nunber");

String salary = request.getParaneter("salary");

String job_id = request.getParaneter("job_id");

enpshean. updat eEnpl oyee(enpl oyee_i d.intValue(), first_nane, last_name, emil,
phone_nunber, salary, job_id);

5-12 Oracle Database 2 Day + Java Developer's Guide

Inserting an Employee Record

Add a jsp:forward tag onto the page. In the Insert Forward dialog box, enter
enpl oyees. j sp for the Page* property.

Save your work.

Run the project and test whether you can edit an employee record. Click Edit for
any employee on the enpl oyees. j sp page, and you should be directed to the
page shown in Figure 5-5 (page 5-13). Modify any of the employee details and
check whether the change reflects in the enpl oyees. j sp page.

Figure 5-5 Editing Employee Data

AnyCo Corporation: HR Application
Edit Employee Record
‘First Mame | Stewan
‘Last MName | King
‘Email |SKING
E16.123 4567
Phone
‘Jub |AD_PRES
‘Munthly Salary |24nnn.n
Done

5.3 Inserting an Employee Record

The steps for inserting a new employee record to the Employees table are similar to
the process for updating an employee record:

1.

2.

Create a method to insert a new employee row into the Enpl oyees table.

Add a link to the main application page, enabling a user to click to insert a new
employee. The link takes the user to ani nsert . j sp with an empty form ready for
the user to enter details for the new row.

Create a JSP page to process the form on the i nsert. j sp page.

Create a JSP page with form controls for users to enter the values for the new
employee.

This section covers the creation of Java application code for inserting new employee
data in the following subsections:

Creating a Method to Insert Data (page 5-14)
Adding a Link to Navigate to an Insert Page (page 5-15)
Creating a JSP Page to Handle an Insert Action (page 5-17)

Creating a JSP Page to Enter New Data (page 5-15)

Updating Data 5-13

Inserting an Employee Record

5.3.1 Creating a Method to Insert Data

In the following steps, you will create a method for inserting a new employee record.

1. Open Dat aHandl er . j ava in the Java Source Editor.
2. Declare a method to add a new employee record.

public String addEnpl oyee(String first_nane,
String last_name, String email,
String phone_nunber, String job_id, int salary) throws SQLException {

}

3. Add a line to connect to the database.
get DBConnecti on();

4. Create a St at emrent object, define a Resul t Set type as before, and formulate the
SQL statement.

stnt =
conn. creat eSt at ement (Resul t Set . TYPE_SCROLL_SENSI Tl VE,
Resul t Set . CONCUR_READ ONLY);
sql String =
"I NSERT | NTO Enpl oyees VALUES (EMPLOYEES_SEQ nextval, '" +
first_nanme + "','" +
last _name + "','" +
emil + "' ,'" +
phone_nunber + "', " +
"SYSDATE, '" +
job_id + ", " +
salary + ",.30,100,80)";

Note:

The last three columns (Conmi ssi on, Manager | d, and Depart nent | d)
contain hard-coded values for the sample application.

5. Add a trace message, and then run the SQL statement.
6. Return a message that says "success" if the insertion was successful.

7. Make the file to check for syntax errors.

Example 5-2 Method for Adding a New Employee Record

public String addEnpl oyee(String first_nane,
String last_nane, String email,
String phone_nunber, String job_id, int salary) throws SQLException {
get DBConnection();
stm = conn.createStatenent (Resul t Set. TYPE_SCROLL_SENSI Tl VE,
Resul t Set . CONCUR_READ ONLY);

sql String =
"I NSERT | NTO Enpl oyees VALUES (EMPLOYEES SEQ nextval, '" +
first_name + "' ,'" +
last_name + "', '" +
emil +"','" +
phone_nunber + "', " +

5-14 Oracle Database 2 Day + Java Developer's Guide

Inserting an Employee Record

"SYSDATE, '" +
job_id + "', " +
salary + ",.30,100,80)";

Systemout. printIn("\nlnserting: " + sqgl String);
stnt.execute(sql String);
return "success";

}
Example 5-2 (page 5-14) shows the code for the addEnpl oyee() method.

5.3.2 Adding a Link to Navigate to an Insert Page

In these steps, you add a link to the header row of the employees table that users can
click to add a new employee.

1. Open enpl oyees. j sp in the Visual Editor.

2. Drag a Hyper Link component from the HTML Common page of the Component
Palette into the empty column header cell at the end of the header row. In the Insert
HyperLink dialog box, enter i nsert . j sp in the HyperLink field, and | nsert
Enpl oyee in the Text field. You cannot browse to find i nsert. j sp as you have
not yet created it. Click OK.

3. Save enpl oyees. j sp.

5.3.3 Creating a JSP Page to Enter New Data

In these steps, you create the i nsert. j sp page, which enables users to enter details
of a new employee record.

1. Create a new JSP page and calliti nsert.j sp.

2. Give the page the same heading as before, AnyCo Corporation: HR Application,
and format it as Heading 2, and center it.

3. On the next line enter Insert Employee Record, and apply the Heading 3 format.
Align this heading to the left of the page.

4. Add the JDeveloper stylesheet to the page.

5. Add a Form. In the Insert Form dialog box, enter i nsert _acti on. j sp for the
Action property, and click OK.

6. Add a Table inside the Form. Specify that you want 6 rows and 2 columns and
accept all other layout defaults.

7. In the first column, enter the following headings, each on a separate row: First
Name, Last Name, Email, Phone, Job, Monthly Salary.

8. Drag and drop a Text Field into the column to the right of the First Name header.
In the Insert Field dialog box, type f i r st _name in the Name property.

9. Drag a Text Field next to each of the Last Name, Email, Phone, and Monthly
Salary headers. Specify the values for each of these text fields for the Name
property in the Insert Field dialog box. The values are indicated in the following
table:

Updating Data 5-15

Inserting an Employee Record

Text Field For Set the Name Property To
Last Name | ast _nanme

Email emai |

Phone phone_nunber

Monthly Salary sal ary

This procedure is different for the Job row.

10. Drag a Combo Box component from the HTML Forms page of the Component
Palette to the column next to the Job heading.

11.In the Insert Select dialog box, enter j ob_i d as the name, and 1 as the size. Click
the add (+) icon and enter SA_REP in the Value field, and in the Caption field,
enter Sal es Represent ati ve. Click the add(+) sign to add each of the following
job titles, then click OK.

Value Caption

HR_REP HR Representative
PR_REP PR Representative
MK_MAN Marketing Manager
SA MAN Sales Manager

Fl _MAN Finance Manager

| T_PROG Software Developer
AD VI P Vice President

12. Drag a Submit button to the Form below the table. In the Insert Submit Button
dialog box, enter Add Enpl oyee for the Value property.

13.Save your work.

Figure 5-6 (page 5-17) shows the i nsert. j sp page in the Visual Editor.

5-16 Oracle Database 2 Day + Java Developer's Guide

Inserting an Employee Record

Figure 5-6 Form to Insert Employee Data

‘a Iogin.jsp edit_emp.jsp]update_action.jsp employees.jsp insert.jsp] |
@&|Paragraph V|Default vINone V|ﬁ & § B 1/ u if EE ¥ &

[l

Insert Employee Record

First Mame

Last Mame

Phane Mumber

Joh

Ernail ‘
|
Manthly Salary ‘

‘ ‘Add Employee‘

=html= <hody= <form= =p= <input>

<]

DesignlSourcelHistorv I 1 | | 3 I

5.3.4 Creating a JSP Page to Handle an Insert Action

In these steps, you create the i nsert _acti on. j sp page. This is a page that
processes the form input from i nsert. j sp, which is the page on which users enter a
new employee record. There are no visual elements on this page, and it is only used to
process thei nsert . j sp form and return control to the enpl oyees. j sp file.

1. Create a JSP page as before. Call iti nsert _acti on.j sp.

2. Add a jsp:usebean tag. As before, enter enpsbean as the ID, and
hr . Dat aHandl er as the Class. Set the Scope to sessi on, and click OK.

3. Position the cursor after the useBean tag and add a Scriptlet to the page. Enter the
following code into the Insert Scriptlet dialog box:

String first_nanme = request.get Parameter ("first_name");
String |ast_name = request.getParameter("last_nanme");

String emai|l = request.getParameter("email");

String phone_nunber = request. get Paraneter (" phone_nunber");
String job_id = request.getParaneter("job_id");

Integer salary = new Integer(request.getParameter("salary"));

enpshean. addEnpl oyee(first_name, |ast_nane, email, phone_nunber, job_id,
sal ary.intValue());

4. Drag a jsp:forward tag onto the page. In the Insert Forward dialog box, enter
enpl oyees. j sp.

5. Save your work.

6. Run the View project to test whether you can insert a new employee record.

Updating Data 5-17

Deleting an Employee Record

To insert an employee, click | nsert Enpl oyee on the enpl oyees. j sp page shown
in Figure 5-7 (page 5-18).

Figure 5-7 Inserting New Employee Data

AnyCo Corporation: HR Application

Employee Data

Filter by Employee Mame

Insert
First Name |[Last Name [Email Joh Phone Salary ||Emplovee
|Steven ||King [SKING |AD_PRES |515.123 4567 |[24000.0/|Eclit

[Neena [Kochhar [NKOCHHAR [AD_VP [515.123.4568 |[17000.0 |Edit

|Lex |De Haan |LDEHaaM [[AD_vP 5151234568 [17000.0 |Edit

|Alexander [Hunold [AHUNOLD |[IT_PROG [590423 4567 80000 |Edit

Done

Figure 5-8 (page 5-18) shows the page where you can insert new employee data with
some data filled in, and the list of jobs being used to select a job.

Figure 5-8 Inserting Employee Data

AnyCo Corporation: HR Application

Insert Employee Record

First Name RICHARD
Last Name JONES
Email RJONES
Phone Number £80.333.5555
Job
[Sales Fepresentative
Menthly Salary HR Representative
PR Fepresentative
harketing Manager
=) icjer
Finance Manager
Add Employee Software Developer -
Dane “ice President

5.4 Deleting an Employee Record

The steps for deleting a record are similar to those for editing and inserting a record:

1. Use the method created in the section Creating a Method to Identify an Employee
Record, to identify a particular employee row. This is used to identify the row to be
deleted.

2. Create a method that deletes an employee record from the database.

5-18 Oracle Database 2 Day + Java Developer's Guide

Deleting an Employee Record

3.

4.

Add a link to the main application page for each row, enabling a user to click to
delete the employee in that row. The link takes the user to a
del et e_act i on. j sp, with the ID of the employee whose record is to be deleted.

To delete the employee from the database, create a JSP page to call the delete
method created in Step 2.

This section discusses the following tasks related to deleting employee data:

Creating a Method for Deleting Data (page 5-19)
Adding a Link to Delete an Employee (page 5-20)

Creating a JSP Page to Handle a Delete Action (page 5-20)

5.4.1 Creating a Method for Deleting Data

The method created in the following steps is used to delete employee records by ID:

1.

2.

Open Dat aHandl er . j ava in the Java Source Editor.
Declare a new method that identifies the employee record to be deleted:

public String del et eEnpl oyeeByld(int id) throws SQLException {

}

Connect to the database as before.
get DBConnecti on();

Create a St at ement object, define a Resul t Set type as before, and formulate the
SQL statement. Add a trace message to assist with debugging.

stnt =
conn. creat eSt at ement (Resul t Set . TYPE_SCROLL_SENSI Tl VE,
Resul t Set . CONCUR_READ ONLY) ;
sql String = "DELETE FROM Enpl oyees WHERE enployee_id = " + id;
Systemout. printIn("\nExecuting: " + sql String);

Run the SQL statement.
stnt. execute(sql String);
If the SQL statement runs without any errors, return the word, Success.

return "success";

The following code example shows the code for the del et eEnpl oyeeByl d()
method.

Method for Deleting an Employee Record

public String del et eEnpl oyeeByld(int id) throws SQLException {
get DBConnecti on();
stm = conn. createStat enent (Resul t Set. TYPE_SCROLL_SENSI Tl VE,
Resul t Set . CONCUR_READ ONLY);
sql String = "DELETE FROM Enpl oyees WHERE enployee_id = " + id;
Systemout. printIn("\nExecuting: " + sql String);
stnt. execute(sql String);
return "success";

Updating Data 5-19

Deleting an Employee Record

5.4.2 Adding a Link to Delete an Employee

In the following instructions, you add a link to each row of the employees table on the
enpl oyees. j sp page. Clicking on that link will delete all employee data for that
row.

1. Open enpl oyees. j sp in the Visual Editor.

2. In the 'Insert Employee' column you created to contain the Edit link (see Figure 5-7
(page 5-18)), add another link for deleting the row. To do this, double-click the
scriptlet that is inside the Enpl oyees table, to display the Scriptlet Properties
dialog box.

3. Modify the scriptlet to include a link to a del et e_act i on. j sp page. The
modified scriptlet should contain the following code:

while (rset.next ())

{

out.println("<tr>");
out.println("<td>" +
rset.getString("first_name") + "</td><td>" +
rset.getString("last_name") + "</td><td> " +
rset.getString("email") + "</td><td> " +
rset.getString("job_id") + "</td><td>" +
rset.getString("phone_nunber") + "</td><td>" +
rset.get Doubl e("sal ary") +
"</td><td> <a href=\"edit.jsp?enpid=" + rset.getlnt(1) +
"\">Edit <a href=\"delete_action.jsp?enpid=" +
rset.getint(1) + "\">Del ete</td>");

out.println("<tr>");

}

4. Save enpl oyees. | sp.

4

5.4.3 Creating a JSP Page to Handle a Delete Action

In the following steps, you create the del et e_act i on. j sp page, which is a page
that only processes the delete operation. There are no visual elements on this page.

1. Create a JSP page and call it del et e_acti on. j sp.

2. Add a jsp:usebean tag. As before, enter enpsbean as the ID, and
hr . Dat aHand! er as the Class. Set the Scope to sessi on, and click OK.

3. Add a Scriptlet to the page. Enter the following code into the Insert Scriptlet dialog
box:

Integer enployee_id =
new | nteger (request. get Parameter("enpid"));
enpshean. del et eEnpl oyeeByl d(enpl oyee_i d. i nt Val ue());

4. Drag Forward from the Component Palette to add a jsp:forward tag to the page. In
the Insert Forward dialog box, enter employees.jsp.

5. Save your work.

6. Run the project and try deleting an employee. Figure 5-9 (page 5-21) shows the
links for deleting employee records from the enpl oyees. j sp.

5-20 Oracle Database 2 Day + Java Developer's Guide

Exception Handling

Figure 5-9 Link for Deleting an Employee from employees.jsp

AnyCo Corporation: HR Application

Employee Data

Filter by Employee MName

Insert
First Name ||Last Name |[Email Joh Phone Salary ||Employee
|steven ||king [skanG |aD_PRES |[515.123 4567 | [24000.0|[Edit Delete

[Neena [Kochhar [NKOCHHAR [sD_wP [[515.123.4568 [17000.0 [Edit Delete
|Lex |DeHaan |LDEH&AN |[AD VP [[515.123.4569 [17000.0 [Edit Delete

Done

If you click Delete for any of the employee records, then that employee record will be
deleted.

5.5 Exception Handling

A SQLExcept i on object instance provides information about a database access error
or other errors. Each SQLExcept i on instance provides many types of information,
including a string describing the error, which is used as the Java Exception message,
available via the get Message method.

The sample application uses t r y and cat ch blocks, which are the Java mechanism for
handling exceptions. With Java, if a method throws an exception, there needs to be a
mechanism to handle it. Generally, a cat ch block catches the exception and specifies
the course of action in the event of an exception, which could simply be to display the
message.

Each JDBC method throws a SQLExcept i on if a database access error occurs. For this
reason, any method in an application that executes such a method must handle the
exception.

All the methods in the sample application include code for handling exceptions. For
example, the get DBConnect i on, which is used to get a connection to the database,
throws a SQLExcept i on, as does the get Al | Enpl oyees method as follows:

public ResultSet getAllEnpl oyees() throws SQLException {
}

For an example of code used to catch and handle a SQLExcept i on, refer to the code
in the aut hent i cat eUser method in the Dat aHandl er . j ava class. In this
example, a t ry block contains the code for the work to be done to authenticate a user,
and a cat ch block handles the case where the authentication fails.The following
sections describe how to add code to the sample application to catch and handle a
SQLExcepti on.

5.5.1 Adding Exception Handling to Java Methods

To handle SQL exceptions in the methods in the sample application, do the following:

1. Ensure that the method throws SQLExcept i on. For example, the method:

Updating Data 5-21

Exception Handling

public ResultSet getAllEnpl oyees() throws SQLException

Usetry and cat ch blocks to catch any SQLExceptions. For example, in the
get Al | Enpl oyees method, enclose your existing code in a t r y block, and add a
cat ch block as follows:

public ResultSet getAllEnployees() throws SQLException {
try {
get DBConnecti on();
stmt =
conn. creat eSt at ement (Resul t Set . TYPE_SCROLL_SENSI Tl VE,
Resul t Set . CONCUR_READ ONLY);
sql String = "SELECT * FROM Enpl oyees order by enpl oyee_id";
Systemout. println("\nExecuting: " + sgl String);
rset = stnt.executeQuery(sql String);
}
catch (SQLException e) {
e.printStackTrace();
}

return rset;

}

3. Asanother example, the del et eEnpl oyee method rewritten to use t ry and

cat ch blocks would return "success" only if the method was successful, that is, the
r et ur n statement is enclosed in the t r y block. The code could be as follows:

public String del et eEnpl oyeeByld(int id) throws SQ.Exception {

try {
get DBConnection();
stnt =
conn. creat eSt at ement (Resul t Set . TYPE_SCROLL_SENSI TI VE,
Resul t Set . CONCUR_READ ONLY);
sql String = "del ete FROM Enpl oyees where enployee_id =" + id;
Systemout. printIn("\nExecuting: " + sql String);

stnt.execute(sql String);
return "success";
}
catch (SQ.Exception e) {
e.printStackTrace();
}
1

5.5.2 Creating a Method for Handling Any SQLException

As a refinement to the code for the sample application, you can create a method that
can be used in any method that may throw a SQLExcept i on, to handle the exception.
As an example, the following method could be called in the cat ch block of any of the
methods in the sample application. This method cycles through all the exceptions that
have accumulated, printing a stack trace for each.

In addition, in the cat ch block, you can return text that explains why the method has
failed. The cat ch block of a method could therefore be written as follows:

catch (SQLException ex) {

}

| ogException(ex);
return "failure";

To add this feature to your application:

5-22 Oracle Database 2 Day + Java Developer's Guide

Navigation in the Sample Application

1. Inthe Dat aHandl er. j ava, add al ogExcept i on method.
2. Edit each of the methods to include t r y and cat ch blocks.
3. In the cat ch block of each method, run the | ogExcept i on method.

4. For methods that have a return value of St ri ng, include a r et ur n statement to
return a message indicating that the method has failed such as:

return "failure";

Example 5-3 Adding a Method to Handle Any SQLException in the Application

public void | ogException(SQLException ex)

{
while (ex !=null) {

ex. printStackTrace();
ex = ex. get Next Exception();

}
}

5.6 Navigation in the Sample Application

The web. xm file is the deployment descriptor file for a web application. One section
of the web. xnl file can be used for defining a start page for the application, for
example:

<web- app>

<wel cone-file>
my\Veél coneFil e.jsp
</wel come-file>

</ Web- app>

If you do not define a welcome page in your web. xim file, generally a file with the
name i hdex, with extension . ht m ,. ht m or . j sp if there is one, is used as the
starting page. With JDeveloper, you can define which page is to be the default run

target for the application, that is, the page of the application that is displayed first, by
defining it in the properties of the project.

Once the application has started, and the start page has been displayed, navigation
through the application is achieved using the following scheme:

¢ Links, in the form of HTML anchor tags, define a target for the link, usually
identifying another JSP page to which to navigate, and some text for the link.

e HTML submit buttons, are used to submit forms on the pages, such as forms for
entering new or changed data.

¢ jsp:forward tags, which are executed on JSP pages that handle queries and
forms, to forward to either the same JSP page again, or another JSP page.

5.6.1 Creating a Starting Page for an Application

In the following steps, you create the i ndex. j sp page, which will be the default
starting page for the application. The page does not include any display elements, and
simply forwards the user to the application login page, | ogi n. j sp. To do this you
use the j sp: forward tag. A j sp: f or war d tag runs on JSP pages that handle queries
and forms, to forward to either the same JSP page again, or another JSP page.

Updating Data 5-23

Navigation in the Sample Application

Create a new JSP page and call iti ndex. j sp.

For the sample application, we will not add any text to this page. From the JSP
page of the Component Palette, drag Forward to include aj sp: f or war d tag in
the page.

In the Insert Forward dialog box for the f or war d tag, enter | ogi n. j sp as the
Page.

You can now specify this new page as the default target for the application as follows:

1.

In the Application Navigator, right-click the View project and choose Project
Properties.

In the displayed tree, select Run/Debug/Profile. In the Run/Debug/Profile area,
ensure that Use Project Settings is selected, and in the Run Configurations area,
ensure that Default Configurations is selected. Click Edit.

In the Edit Launch Settings dialog box, select Launch Settings. In the Launch
Settings area on the right, click Browse next to the Default Run Target field and
navigate to find the new i ndex. j sp page you just created and click OK. Then
click OK again to close the dialog box.

You can now run your application by right-clicking in the View project and select Run
from the shortcut menu. When the application launches, it first runs i ndex. j sp,
which has been set as the default launch target for the application. The i ndex. j sp
forwards you directly to the login page, | ogi n. j sp, which is displayed in your
browser.

5-24 Oracle Database 2 Day + Java Developer's Guide

6

Enhancing the Application: Advanced
JDBC Features

This chapter describes additional functionality that you can use in your Java
application. Some of these features have not been implemented in the sample
application, while some features are enhancements you can use in your code to
improve performance.

This chapter includes the following sections:
¢ Using Dynamic SQL (page 6-1)
¢ Calling Stored Procedures (page 6-3)

* Using Cursor Variables (page 6-9)

6.1 Using Dynamic SQL

Dynamic SQL, or generating SQL statements during run time, is a constant need in a
production environment. Very often, and especially in the matter of updates to be
performed on a database, the final query is not known until run time.

For scenarios where many similar queries with differing update values must be run on
the database, you can use the Or acl ePr epar edSt at enent object, which extends the
St at ement object. This is done by substituting the literal update values with bind
variables. You can also use stored PL/SQL functions on the database by calling stored
procedures through the Or acl eCal | abl eSt at ement object.

This section discusses the following topics:
* Using OraclePreparedStatement (page 6-1)
* Using OracleCallableStatement (page 6-2)

* Using Bind Variables (page 6-2)

6.1.1 Using OraclePreparedStatement

To run static SQL queries on the database, you use the St at emrent object. However,
to run multiple similar queries or perform multiple updates that affect many columns
in the database, it is not feasible to hard-code each query in your application.

You can use Or acl ePr epar edSt at ement when you run the same SQL statement
multiple times. Consider a query like the following:

SELECT * FROM Enpl oyees WHERE | D=xyz;

Every time the value of xyz in this query changes, the SQL statement needs to be
compiled again.

Enhancing the Application: Advanced JDBC Features 6-1

Using Dynamic SQL

If you use Or acl ePr epar edSt at ement functionality, the SQL statement you want
to run is precompiled and stored in a Pr epar edSt at errent object, and you can run it
as many times as required without compiling it every time it is run. If the data in the
statement changes, you can use bind variables as placeholders for the data and then
provide literal values at run time.

Consider the following example of using Or acl ePr epar edSt at ement :

The advantages of using the Or acl ePr epar edSt at ement interface include:
* You can batch updates by using the same Pr epar edSt at ement object

* You can improve performance because the SQL statement that is run many times
is compiled only the first time it is run.

* You can use bind variables to make the code simpler and reusable.
Example 6-1 Creating a PreparedStatement

Oracl ePreparedStatenent pstnmt = conn. prepareSt at enent (" UPDATE Enpl oyees
SET salary = ? WHERE ID = ?");
pstnt. set Bi gDeci mal (1, 153833. 00)
pstnt.setint(2, 110592)

6.1.2 Using OracleCallableStatement

You can access stored procedures on databases using the

Oracl eCal | abl eSt at enent interface. This interface extends the

O acl ePr epar edSt at erent interface. The Or acl eCal | abl eSt at enent interface
consists of standard JDBC escape syntax to call stored procedures. You may use this
with or without a result parameter. However, if you do use a result parameter, it must
be registered as an QUT parameter. Other parameters that you use with this interface
can be either | N, QUT, or both.

These parameters are set by using accessor methods inherited from the

Or acl ePr epar edSt at enent interface. | N parameters are set by using the set XXX
methods and OUT parameters are retrieved by using the get XXX methods, XXX being
the Java data type of the parameter.

A Cal | abl eSt at ement can also return multiple Resul t Set objects.

As an example, you can create an Or acl eCal | abl eSt at enent to call the stored
procedure called f 00, as follows:

You can pass the string bar to this procedure in one of the following two ways:

cs.setString(1,"bar"); // JDBC standard
Il or...
cs.set StringAtName(X, "value"); // Oracle extension

Example 6-2 Creating a CallableStatement

Oracl eCal | abl eStatenent cs = (Oracl eCal | abl eSt at ement)
conn. prepareCal I ("{call foo(?)}");

6.1.3 Using Bind Variables

Bind variables are variable substitutes for literals in a SQL statement. They are used in
conjunction with Or acl ePr epar edSt at enent and Or acl eCal | abl eSt at ement
to specify parameter values that are used to build the SQL statement. Using bind
variables has remarkable performance advantages in a production environment.

6-2 Oracle Database 2 Day + Java Developer's Guide

Calling Stored Procedures

For PL/SQL blocks or stored procedure calls, you can use the following qualifiers to
differentiate between input and output variables: | N, OUT, and | N QUT. Input variable
values are set by using set XXX methods and OUT variable values can be retrieved by
using get XXX methods, where XXX is the Java data type of the values. This depends
on the SQL data types of the columns that you are accessing in the database.

6.2 Calling Stored Procedures

Oracle Java Database Connectivity (JDBC) drivers support the processing of PL/SQL
stored procedures and anonymous blocks. They support Oracle PL/SQL block syntax
and most of JDBC escape syntax. The following PL/SQL calls would work with any
Oracle JDBC driver:

As an example of using the Oracle syntax, here is a PL/SQL code snippet that creates a
stored function. The PL/SQL function gets a character sequence and concatenates a
suffix to it:

You can call this stored function in a Java program as follows:

The following sections describe how you can use stored procedures in the sample
application in this guide:

* Creating a PL/SQL Stored Procedure in JDeveloper (page 6-4)
* Creating a Method to Use the Stored Procedure (page 6-5)

¢ Enabling Users to Choose the Stored Procedure (page 6-7)

e (Calling the Stored Procedure from the Application (page 6-8)

Example 6-3 Calling Stored Procedures

/1 JDBC syntaxCal | abl eSt at ement cs1 = conn. prepareCal |
("{call proc (?,?)}") ; Il stored proc
Cal | abl eSt at enent ¢s2 = conn. prepar eCal |
("{? =call func (?,?)}") ; I/ stored func

/1 Oracle PL/SQ bl ock syntax
Cal | abl eSt at enent ¢s3 = conn. prepar eCal |
("begin proc (?,?); end;") ; // stored proc
Cal | abl eSt at enent c¢s4 = conn. prepar eCal |
("begin ? :=func(?,?); end;") ; // stored func

Example 6-4 Creating a Stored Function

create or replace function foo (vall char)
return char as

begin

return vall || "suffix';

end;

Example 6-5 Calling a Stored Function in Java

O acl eDat aSource ods = new Oracl eDat aSour ce();

ods. set URL("j dbc: oracl e: t hi n: @host string>");

ods. set User ("hr");

ods. set Password("hr");

Connection conn = ods. get Connection();

Cal | abl eStatenent cs = conn. prepareCall ("begin ? := foo(?); end;");
cs. registerQut Parameter (1, Types. CHAR) ;

cs.setString(2, "aa");

Enhancing the Application: Advanced JDBC Features 6-3

Calling Stored Procedure

S

cs
St

. execut eUpdat e();
ring result = cs.getString(1);

6.2.1 Creating a PL/SQL Stored Procedure in JDeveloper

JDeveloper enables you to create stored procedures in the database through the
Database Navigator. In these steps, you create a stored procedure that can be used as
an alternative way of inserting an employee record in the sample application.

1.

2.

Select the DatabaseNavigatorName tab to view the Database Navigator.

Expand the database connection node (by default called Connect i onl) to see the
objects in the HR database.

Right-click Procedures, and select New Procedure.

In the Create PL/SQL Procedure dialog, enter i nsert _enpl oyee as the object
name. Click OK.

The skeleton code for the procedure is displayed in the Source Editor.

After the keywords CREATE OR REPLACE, enter the following lines of code
replacing the existing line:

PROCEDURE | NSERT_EMPLOYEE (p_first_name enpl oyees. first_nane% ype,
p_| ast _name enpl oyees. | ast _name% ype,

p_emai | enpl oyees. emai | % ype,
p_phone_nunber enpl oyees. phone_nunber % ype,
p_job_id enpl oyees. j ob_i d% ype,

p_sal ary enpl oyees. sal ar y% ype

)
After the BEG Nstatement, replace the line that reads NULL with the following:

I NSERT | NTO Enpl oyees VALUES (EMPLOYEES SEQ nextval, p_first_nane,
p_l ast_name, p_email, p_phone_nunber, SYSDATE, p_job_id,
p_sal ary,.30, 100, 80);

You can see that the statement uses the same hard-coded values that are used for
the last three columns in the addEnpl oyee method in the Dat aHandl er . j ava
class.

Add the procedure name in the END statement:
END i nsert _enpl oyee;

Save the file, and check whether there are any compilation errors.

Example 6-6 Creating a PL/SQL Stored Procedure to Insert Employee Data

CREATE OR REPLACE PROCEDURE | NSERT_EMPLOYEE (p_first_name enployees.first_nane
Y%ype,
p_| ast _nanme enpl oyees. | ast _name% ype,
p_emai | enpl oyees. emai | % ype,
p_phone_nunber enpl oyees. phone_nunber % ype,
p_job_id enpl oyees. j ob_i d% ype,
p_sal ary enpl oyees. sal ar y% ype
)
AS
BEG N

6-4 Oracle Database

I NSERT | NTO Enpl oyees VALUES (EMPLOYEES SEQ nextval, p_first_name ,

2 Day + Java Developer's Guide

Calling Stored Procedures

p_last_name , p_email , p_phone_nunber, SYSDATE, p_job_id,
p_sal ary, . 30, 100, 80) ;

END i nsert _enpl oyee;

The complete code for the stored procedure is shown in Example 6-6 (page 6-4).

6.2.2 Creating a Method to Use the Stored Procedure

In these steps, you add a method to the Dat aHandl er . j ava class that can be used as
an alternative to the addEnpl oyee method. The new method you add here makes use
of the i nsert _enpl oyee stored procedure.

1.

2.

Select the Application tab to display the Application Navigator.

If the Dat aHandl er . j ava file is not already open in the Java Source Editor,
double-click it to open it.

Import the Cal | abl eSt at ement interface as follows:
import java.sql.CallableStatenent;

After the addEnpl oyee method, add the declaration for the addEnpl oyeeSP
method.

public String addEnpl oyeeSP(String first_name, String |ast_nane,
String email, String phone_nunmber, String job_id,

int salary) throws SQLException {
}

The method signature is the same as that for addEnpl oyee.
Inside the method, add a t r y block, and inside that, connect to the database.

try {
get DBConnection();

}
In addition, inside the t r y block, create the SQL string:

sql String = "begin hr.insert_enployee(?,?,7,?2,7,?),; end;";

The question marks (?) in the statement are bind variables, acting as placeholders
for the values of fi r st _name, | ast _namne, and so on expected by the stored
procedure.

Create the Cal | abl eSt at enent :
Cal | abl eSt atement cal I stmt = conn. prepareCal | (sql String);
Set the | Nparameters:

callstnt.setString(1, first_name);
callstnt.setString(2, |ast_nane);
callstn.setString(3, email);

cal I'stnt.setString(4, phone_nunber);
callstnt.setString(5, job_id);
callstnt.setInt(6, salary);

Add a trace message, and run the callable statement.

Enhancing the Application: Advanced JDBC Features 6-5

Calling Stored Procedures

Systemout. printin("\nlnserting with stored procedure: " +
sql String);
cal I'stnt.execute();

10. Add a return message:
return "success"”;

11. After the t r y block, add a cat ch block to trap any errors. The, call the
| ogExcept i on created in the “Adding a Method to Handle Any SQLException in
the Application.

catch (SQLException ex) {

Systemout. println("Possible source of error: Mike sure you have created the
stored procedure");

| ogException(ex);

return "failure";

}
12.Save Dat aHandl er . j ava.

Example 6-7 Using PL/SQL Stored Procedures in Java

public String addEnpl oyeeSP(String first_name, String |ast_nane,
String email, String phone_nurmber, String job_id,
int salary) throws SQLException {

try {
get DBConnection();

sqgl String = "begin hr.insert_enployee(?,?,7,?,?,?),; end;"

Cal | abl eStatenent cal | stnmt = conn. prepareCal | (sql String);

callstnm.setString(1, first_nane);

callstnt.setString(2, last_name);

callstnm.setString(3, emil);

callstnt.setString(4, phone_nunber);

callstnt.setString(5 job_id);

callstnt.setInt(6, salary);

Systemout.printIn("\nlnserting with stored procedure: " +
sqgl String);

cal I stnt.execute();
return "success";
1
catch (SQLException ex) {
System out. println("Possible source of error: Mike sure you have created the
stored procedure");
| ogException(ex);
return "failure";
1
}

See Also:

The complete method is shown in Example 6-7 (page 6-6).

6-6 Oracle Database 2 Day + Java Developer's Guide

Calling Stored Procedures

Note:

If you have not added the | ogExcept i on() method (see Example 5-3
(page 5-23)), JDeveloper will indicate an error by showing a red curly line
under | ogExcept i on(ex) . This method must be present in the

Dat aHandl er . j ava class before you proceed with compiling the file.

6.2.3 Enabling Users to Choose the Stored Procedure

The steps in this section add a radio button group to the i nsert. j sp page, which
enables a user to choose between inserting an employee record using the stored
procedure, or by using a SQL query in Java code.

1.

2.

8.

Openi nsert. j spin the Visual Editor, if it is not already open.

Create a new line after the Insert Employee Record heading. With the cursor on this
new line, drag UseBean from the JSP page of the Component Palette to add a

j sp: useBean tag to the page. Enter enpsbean as the ID, browse to select

hr . Dat aHandl er as the Class, and set the Scope to sessi on. With the UseBean
still selected on the page, set the style of this line to None instead of Heading 3.

Drag a Radio Button component from the HTML Forms page of the Component
Palette onto the page inside the form above the table. In the Insert Radio Button
dialog, enter useSP as the Name, f al se as the Value, and select Checked. Click
OK.

In the Visual Editor, position the cursor to the right of the button, and enter text to
describe the purpose of the button, for example, 'Use only JDBC to insert a new
record'.

Press Enter at the end of the current line to create a new line.

Drag a second Radio Button below the first one. In the Insert Radio Button dialog,
use useSP as the Name, t r ue as the Value, and ensure that the Checked check box
is not selected.

In the Visual Editor, position the cursor directly to the right of the button, and enter
text to describe the purpose of the button, for example, 'Use stored procedure
called via JDBC to insert a record'.

Save the page.

Figure 6-1 (page 6-8) shows i nsert . j sp with the radio button that provides the
option to use a stored procedure.

Enhancing the Application: Advanced JDBC Features 6-7

Calling Stored Procedures

Figure 6-1 Adding a Link to Provide the Stored Procedure Option

@

|Paragraph VIDeFauIt vINDne '|% Hh LB I U == 3:

I#1

- -

Insert Employee Record

AnyCo Corporation: HR Application

® Use anly JOBC to insert a new record

O Use stored pracedure called via JOBC to insert a recordl

First Mame

Last Mame

Phone Mumber

Joh

haonthly Salary

Email |
I

‘Add Employee‘

=htiml= <hody= =forme= 2p= use...

Design l Source l Histary I 1 | | b I

6.2.4 Calling the Stored Procedure from the Application

The steps in this section modify the i nsert _acti on. j sp file, which processes the
form on the i nsert.j sp page, to use the radio button selection and select the
appropriate method for inserting a new employee record.

1.

2.

Openi nsert_acti on. j sp in the Visual Editor, if it is not already open.

Double-click the scriptlet to invoke the Scriptlet Properties dialog box and add a
new variable after the salary variable, as follows:

String useSPFlag = request. get Paraneter ("useSP");

Below that, still in the Scriptlet Properties dialog box, replace the existing
enpsbean. addEnpl oyee line with the following lines of code to select the
addEnpl oyeeSP method or the pure JDBC addEnmpl oyee method to insert the
record.

if (useSPFl ag. equal sl gnoreCase("true"))
enpsbean. addEnpl oyeeSP(first_nane, |ast_nanme, email,
phone_nunber, job_id, salary.intValue());

/] otherw se use pure JDBC insert

el se
enpsbean. addEnpl oyee(first_nane, |ast_nane, email,
phone_nunber, job_id, salary.intValue());

6-8 Oracle Database 2 Day + Java Developer's Guide

Using Cursor Variables

4. Saveinsert_action.jsp.

You can now run the application and use the radio buttons on the insert page to
choose how you want to insert the new employee record. In a browser, the page will
appear as shown in Figure 6-2 (page 6-9).

Figure 6-2 Using Stored Procedures to Enter Records

AnyCo Corporation: HR Application
Insert Employee Record

@ Use anly JOBC to insert a new recard

CUse stored procedure called via JOBC to insert a record

First Mame

Last Mame

Email

Phone Mumber

Job Sales Representative v

Manthly Salary

Add Employee

Done

6.3 Using Cursor Variables

Oracle JDBC drivers support cursor variables with the REF CURSOR types, which are
not a part of the JDBC standard. REF CURSOR types are supported as JDBC result sets.

A cursor variable holds the memory location of a query work area, rather than the
contents of the area. Declaring a cursor variable creates a pointer. In SQL, a pointer has
the data type REF x, where REF is short for REFERENCE and x represents the entity
being referenced. A REF CURSOR, then, identifies a reference to a cursor variable.
Many cursor variables may exist to point to many work areas, so REF CURSOR can be
thought of as a category or data type specifier that identifies many different types of
cursor variables. A REF CURSOR essentially encapsulates the results of a query.

Oracle does not return ResultSets. To access data returned by a query, you use
CURSORS and REF CURSORS. CURSCRS contain query results and metadata. A REF
CURSOR (or CURSCR variable) data type contains a reference to a cursor. It can be
passed between the RDBMS and the client, or between PL/SQL and Java in the
database. It can also be returned from a query or a stored procedure.

Starting from this release, Oracle Database supports results of SQL statements
executed in a stored procedure to be returned implicitly to the client.

Note:
REF CURSORinstances are not scrollable.

Enhancing the Application: Advanced JDBC Features 6-9

Using Cursor Variables

This section contains the following subsections:

¢ Oracle REF CURSOR Type Category (page 6-10)

® Accessing REF CURSOR Data (page 6-10)

¢ Using REF CURSOR in the Sample Application (page 6-11)
Related Topics:

Oracle Database [DBC Developer’s Guide

6.3.1 Oracle REF CURSOR Type Category

To create a cursor variable, begin by identifying a type that belongs to the REF
CURSOR category. For example:

dept _cv Dept Cursor Typ

Then, create the cursor variable by declaring it to be of the type Dept Cur sor Typ:

REF CURSOR, then, is a category of data types, rather than a particular data type.
Stored procedures can return cursor variables of the REF CURSOR category. This
output is equivalent to a database cursor or a JDBC result set.

Example 6-8 Declaring a REF CURSOR Type
DECLARE TYPE Dept Cursor Typ | S REF CURSCR

6.3.2 Accessing REF CURSOR Data

In Java, a REF CURSORis materialized as a Resul t Set object and can be accessed as
follows:

In the preceding example:

1. ACall abl eSt at enent object is created by using the pr epar eCal | method of
the connection class.

2. The callable statement implements a PL/SQL procedure that returns a REF
CURSCR.

3. As always, the output parameter of the callable statement must be registered to
define its type. Use the type code Or acl eTypes. CURSOR for a REF CURSCR

4. The callable statement is run, returning the REF CURSCR

5. The Cal | abl eSt at ement object is cast to Or acl eCal | abl eSt at ement to use
the get Cur sor method, which is an Oracle extension to the standard JDBC
application programming interface (API), and returns the REF CURSCRinto a
Resul t Set object.

Example 6-9 Accessing REF Cursor Data in Java

inmport oracle.jdbc.*;

Cal | abl eSt at ement cstnt;
Resul t Set cursor;

/1 Use a PL/SQL block to open the cursor
cstmt = conn. prepareCal |

6-10 Oracle Database 2 Day + Java Developer's Guide

Using Cursor Variables

("begin open ? for select enane fromenp; end;");

cstnt.regi sterQutParaneter(1, OracleTypes. CURSOR);
cstnt. execute();
cursor = ((OracleCall abl eStatenent)cstnt). get Cursor(1);

/1 Use the cursor like a normal Result Set
while (cursor.next ())
{Systemout.println (cursor.getString(1));}

6.3.3 Using REF CURSOR in the Sample Application

In the following sections, you enhance the sample application to display a
dynamically-generated list of job IDs and job titles in the Job field when they are
inserting a new employee record.

* Creating a Package in the Database (page 6-11)

* Creating a Database Function (page 6-12)

e (Calling the REF CURSOR from a Method (page 6-12)
¢ Displaying a Dynamically Generated List (page 6-13)

To do this, you create a database function, GET_JOBS, that uses a REF CURSOR to
retrieve a result set of jobs from the Jobs table. A new Java method, get Jobs, calls
this database function to retrieve the result set.

6.3.3.1 Creating a Package in the Database

The following steps create a new package in the database to hold a REF CURSCR
declaration.

1. Select the DatabaseNavigatorName tab to view it in the Navigator.

2. Expand the Connectionl node to view the list of database objects. Scroll down to
Packages. Right-click Packages and select New Package.

3. In the Create PL/SQL Package dialog, enter JOBSPKGas the name. Click OK. The
package definition is displayed in the Source Editor.

4. Replace theline/* TODO ent er package decl arations (types,
exceptions, nethods etc) here */ with the following line, to declare a
REF CURSOR as follows:

TYPE ref _cursor 1S REF CURSOR;
5. Save the package.

Example 6-10 Creating a Package in the Database

CREATE OR REPLACE
PACKAGE JOBSPKG AS

TYPE ref _cursor 1S REF CURSOR;
END;

The code for the package is shown in Example 6-10 (page 6-11):

Enhancing the Application: Advanced JDBC Features 6-11

Using Cursor Variables

6.3.3.2 Creating a Database Function

These steps create a database function GET_JOBS that uses a REF CURSOR to retrieve
a result set of jobs from the Jobs table.

1. In the Database Navigator, again expand the necessary nodes to view the objects in
the HR database. Right-click Functions and select New Function from the shortcut
menu.

2. In the Create PL/SQL Function dialog, enter GET_JOBS as the name. Click OK.
The definition for the GET_JOBS function displays in the Source Editor

3. In the first line of the function definition, substitute JobsPkg. r ef _cur sor as the
return value, in place of VARCHAR2.

4. After the AS keyword, enter the following:
j obs_cursor JobsPkg. ref _cursor;
5. In the BEG Nblock enter the following code to replace the current content:
OPEN j obs_cursor FOR
SELECT job_id, job_title FROM | obs;
RETURN j obs_cursor;

6. Save the function

Example 6-11 Creating a Stored Function

CREATE OR REPLACE FUNCTI ON GET_JOBS
RETURN JobsPkg. ref _cursor
AS jobs_cursor JobsPkg.ref _cursor;
BEG N
OPEN j obs_cursor FOR
SELECT job_id, job_title FROMjobs;
RETURN j obs_cur sor;
END;

The code for the function is shown in Example 6-11 (page 6-12).

6.3.3.3 Calling the REF CURSOR from a Method

These steps create a Java method, get Jobs, in the Dat aHandl er class that calls the
GET_JOBS function to retrieve the result set.

1. Double-click Dat aHandl er . j ava to open it in the Source Editor if it is not already
open.

2. Enter the method declaration.
public ResultSet getJobs() throws SQ.Exception {
}
3. Within the method body, connect to the database.
get DBConnection();
4. Following the connection, declare a new variable, j obquer y:

String jobquery = "begin ? := get_jobs; end;";

6-12 Oracle Database 2 Day + Java Developer's Guide

Using Cursor Variables

5. Create a CallableStatement using the pr epar eCal | method:
Cal | abl eStatenment cal | Stnt = conn. prepareCal | (j obquery);

6. Register the type of the OUT parameter, using an Oracle-specific type.
cal I Stnt.registerQutParaneter(1l, O acleTypes. CURSOR);

7. When you specify that you want to use an Oracle-specific type, JDeveloper
displays a message asking you to use Alt+Enter to import
oracl e. jdbc. Oracl eTypes. Press Alt+Enter, and then select OracleTypes
(or acl e. j dbc) from the list that appears.

8. Run the statement and return the result set.

cal | Stnt.execute();
rset = (ResultSet)call Stnt.getQject(1);

9. Enclose the code entered so farin at ry block.

10. Add a catch block to catch any exceptions, and call your logException method as
well.

catch (SQLException ex) {
| ogException(ex);
}

11. After the close of the cat ch block, return the result set.
return rset:

12. Make the file to check for syntax errors.

The code for the get Jobs method is as follows:

public ResultSet getJobs() throws SQLException {

try {
get DBConnection();

String jobquery = "begin ? := get_jobs; end;";
Cal | abl eStatenent cal | Stnt = conn. prepareCal | (j obquery);
cal | Stnt.registerQutParanmeter(1, O acleTypes. CURSOR);
cal | Stnt.execute();
rset = (ResultSet)callStnt.getoject(1);

} catch (SQLException ex) {

| ogException(ex);

}

return rset:

}

6.3.3.4 Displaying a Dynamically Generated List

To create the list displaying the list of job IDs and job titles in the Insert page, you
hard-coded the job IDs and job titles. In the following steps, you replace this with a
dynamically-generated list provided by the REF CURSOR created in the previous
section.

1. Double-clicki nsert.j sp in the Application Navigator to open it in the Visual
Editor, if it is not already open.

2. Click and select the Page Directive on the top left corner of the page. The Property
Inspector now shows the properties of the Page Directive.

Enhancing the Application: Advanced JDBC Features 6-13

Using Cursor Variables

3. Click the down arrow next to the Import field. The Edit Property: Import dialog
box is displayed. Select the Hierarchy tab and then select Resul t Set after
extending Java and SQL folders respectively. Click OK.

4. Drag a scriptlet onto the page next to the Page Directive. In the Insert Scriptlet
dialog box, add the following code to execute the get Jobs method and return a
result set containing a list of jobs.

Resul t Set rset = enpsbean. get Jobs();

5. Select the ListBox component in the page (the component to enter the job in the
form), and click Scriptlet in the JSP Component Palette. (You need not drag and
drop the scriptlet onto the page in this case.) The Insert Scriptlet dialog box
appears.

6. Enter the following code into the Insert Scriptlet dialog box. Click OK.

while (rset.next ())
{

out.printin("<option value=" + rset.getString("job_id") + ">" +
rset.getString("job_title") + "</option>");
}

7. Remove the hard-coded values as follows.

With the ListBox component still selected, in the Structure window scroll to Job
field. Examine the list of hard-coded options below the select keyword. Delete each
of the options, ensuring that you retain the scriptlet.

Figure 6-3 Structure View of ListBox Options

Einsert.jsp - Structure]

=
i A Emall a
=-Af td |
e = input
E}-am tr

E}ﬂﬁ td
HEf A Phone Mumber

Insert before apkion 3
Insert inside option »
Insert after option »
"y Farm »
LT sl Table »
a3 tr Insert HTMLIISP...
Egﬁ td 3{' cut Cirl-
Ll Monthl Copy Ctrl-C
E}ﬂﬁ td |

;i i o7 Delete b by
Source lDesign] G0 bo Source

8. Save the page.

6-14 Oracle Database 2 Day + Java Developer's Guide

Using Cursor Variables

Now run the application, click to insert a new employee and use the list to display a
list of available jobs. Figure 6-4 (page 6-15) shows the dynamic jobs list in the

browser.

Figure 6-4 Dynamically Generated List in Browser

Insert Employee Record

AnyCo Corporation: HR Application

@ Use only JOBC to insert a new record

O Use stored procedure called via JOBC to insert a recard

First Mame

Last Mame

Ermail

FPhone Mumber

Joh

Monthly Salary

President

[President
Administration Vice President

Add Employee

Done

Administration Assistant

Finance Manaier

Accounting Manager

Fublic Accountant

Sales Manager

Sales Representative
Furchasing Manager
Furchasing Clerk

Stock Manager

Stock Clerk

Shipping Clerk

Fragrammer

Marketing Manager

Marketing Representative
Hurnan Resources Representative
Fublic Relations Representative

Enhancing the Application: Advanced JDBC Features 6-15

Using Cursor Variables

6-16 2 Day + Java Developer's Guide

v

Getting Unconnected from Oracle Database
12c Release 2 (12.2)

While unconnecting from the database in JDeveloper is a simple task, it is not a
process by itself in a Java application. In the application, you must explicitly close all
Resul t Set, St at enent , and Connect i on objects after you are through using them.
When you close the Connect i on object, you are unconnected from the database. The
cl ose methods clean up memory and release database cursors. Therefore, if you do
not explicitly close Resul t Set and St at ement objects, serious memory leaks may
occur, and you may run out of cursors in the database. You must then close the
connection.

This chapter includes the following sections:
* Creating a Method to Close All Open Objects (page 7-1)

* (Closing Open Objects in the Application (page 7-2)

7.1 Creating a Method to Close All Open Objects

The following steps add a cl oseAl | method to the Dat aHandl er class:

1. Open Dat aHandl er . j ava in the Java Source Editor by double-clicking it in the
Application Navigator.

2. Declare the cl oseAl | method at the end of the Dat aHandl er class as follows:

public void closeAll() {

}

3. Within the method body, check whether the Resul t Set object is open as follows:
if (rset '=null) {

4. Ifitis open, close it and handle any exceptions as follows:

try { rset.close(); } catch (Exception ex) {}
rset = null;

}

5. Repeat the same actions with the St at ement object.
if (stnt !=null) {

try { stnt.close(); } catch (Exception ex) {}
stnmt = null;

}

6. Finally, close the Connect i on object.

Getting Unconnected from Oracle Database 12c¢ Release 2 (12.2) 7-1

Closing Open Obijects in the Application

if (conn!=null) {
try { conn.close(); } catch (Exception ex) {}
conn = null;

}

Example 7-1 Creating a Method to Close All Open Objects
public void closeAll() {

if (rset '=null) {
try { rset.close();

}
catch (Exception ex) {}
rset = null;
}
if (stmt !=null) {
try {
stnt.close();
}
catch (Exception ex) {}
stmt = null;
}
if (conn!=null) {
try {
conn. cl ose();
}
catch (Exception ex) {}
conn = null;
}
}

The complete cl oseAl | method should look similar to that shown in Example 7-1
(page 7-2).

7.2 Closing Open Objects in the Application

You must close the Resul t Set , St at enent , and Connect i on objects only after you
have finished using them. In the Dat aHand| er class, the insert, update, and delete
methods must close these objects before returning. Note that the query methods
cannot close these objects until the enpl oyees. j sp page has finished processing the
rows returned by the query.

In the following steps, you add the appropriate calls to the cl oseAl | method in the
Dat aHandl er. j ava file:

1. Open Dat aHandl er . j ava in the Java Source Editor.

2. At the end of the addEnpl oyee method, after the closing brace of the cat ch
block, add the following call to the cl oseAl | method inafi nal | y block:

finally {
closeA | ();

}

3. Add the same call to the addEnpl oyeeSP, del et eEnpl oyeeByl d,
fi ndEnpl oyeeByl d, updat eEnpl oyee, and aut hent i cat eUser methods.

4. Open the enpl oyees. j sp file in the Visual Editor. Find the scriptlet inside the
Enpl oyees table, and double-click to open the Insert Scriptlet dialog box.

7-2 Oracle Database 2 Day + Java Developer's Guide

Closing Open Obijects in the Application

. Add the following statement after the whi | e loop:
enpshean. cl oseAl | ();

. Save your work, and compile and run the application to ensure that everything still
works correctly.

Getting Unconnected from Oracle Database 12c¢ Release 2 (12.2) 7-3

Closing Open Obijects in the Application

7-4 2 Day + Java Developer's Guide

8

Creating a Universal Connection Pool

A connection pool is a cache of database connection objects. The objects represent
physical database connections that can be used by an application to connect to a
database. At run time, the application requests a connection from the pool. If the pool
contains a connection that can satisfy the request, it returns the connection to the
application. If no connections are found, a new connection is created and returned to
the application. The application uses the connection to perform some work on the
database and then returns the object back to the pool. The connection is then available
for the next connection request.

Universal Connection Pool (UCP) for JDBC provides a connection pool
implementation for caching JDBC connections. Java applications that are database-
intensive use the connection pool to improve performance and better utilize system
resources. A UCP JDBC connection pool can use any JDBC driver to create physical
connections that are then maintained by the pool. The pool can be configured and
provides a full set of properties that are used to optimize pool behavior based on the
performance and availability requirements of an application. For more advanced
applications, UCP for JDBC provides a pool manager that can be used to manage a
pool instance.

This chapter describes how to create a Universal Connection Pool. This chapter has the
following sections:

* Setting JDeveloper Project Properties (page 8-1)
* Creating the Stock Ticker Application (page 8-3)
* Observing the Output (page 8-6)

Related Topics:

Oracle Database [DBC Developer’s Guide

8.1 Setting JDeveloper Project Properties

To create a Universal Connection Pool, first you must set JDeveloper project properties
by performing the following steps:

1. From the Application menu, select Default Project Properties.

Creating a Universal Connection Pool 8-1

Setting JDeveloper Project Properties

Figure 8-1 Setting the Default Project Properties

LTOd TSl Refactor Search

@ Mew....
= Qpen..
Reopen L]
(]
Y
F‘ Manage Templates. ..
Secure]
Deploy]

sefaulk Praject Prop

=]

2. Click Libraries and Classpath on the left panel of the Default Project Properties

screen.

Figure 8-2 Setting the Libraries and Classpath

é- Default Project Properties

(&)| Libraries and Classpath

[Project Source Paths Java 3E Version:
[ADF Model | Change. .. |
----- ADF Wiy

[+ Business Components
[Compiler Export Description | Add Library. .. |

Classpath Entries:

----- Deployment | Add JAR[Directory. .. |
----- EJE Madule

----- Extension

[Javadoc

----- Java EE Application
----- J5P Taqg Libraries
----- J5P visual Editor

----- Resource Bundle
----- Run/Debug/Profile

| Help | | (o] 4 _J | Cancel |

Click Add JAR/ Directory on the right pane of the Default Project Properties
screen.

The Add Archive or Directory screen is displayed.
Select ucp. j ar file in the $ORACLE_HOVE/ ucp/ | i b folder and click Select.

8-2 Oracle Database 2 Day + Java Developer's Guide

Creating the Stock Ticker Application

Figure 8-3 The Add Archive or Directory Screen

Location: |I§:| C:happladministratoriyproductt 11,2, 0\dbhame_1ucpllibiucp. jar '| ﬁ

D relnotes

é B[] scheduler
- shax

Work D sqldeveloper

@ -] sql

D sqlplus

Horne D SEVI

G- sysman

m tiringFramewark,
200 uep
=R

m wing
B3 xdk
(-2 dbhame _2

5. Click OK.

8.2 Creating the Stock Ticker Application

The following example is a stock ticker application that uses the Universal Connection
Pool to retrieve stock price information from the database. Using this example, you
can view the Universal Connection Pool properties, change the properties at run time
without shutting down the pool instance, view Universal Connection Statistics and so
on. Perform the following steps to run the example:

1. Click New Application in the Application Navigator panel.

4.

5.

Figure 8-4 The Application Navigator Panel Options

=

Application Mavigator

—
% New Application...

Open Application...

Enter St ockTi cker App as the Application Name in the Name Your Application

screen and click Next.

Enter St ockTi cker Pr oj as the Project Name in the Name Your Project screen
and click Finish.

Click Open from File menu.

Select the UCPDenp. j ava, d i ent Si nul at or . j ava, DBConfi g. j ava,
Ht t pServer. j ava,and DbConfi g. properti es files and click Open.

In the DbConfi g. properti es file, verify the information about the user name,
the password, and the URL of your Oracle database.

Creating a Universal Connection Pool 8-3

Creating the Stock Ticker Application

Figure 8-5 The DbConfig.properties File in the Code Editor

ackTickerdpp, jws | _ﬁ]DbConFig.java Dbfonﬁg.proparties
- +4)

LE_USER =hr
DE_PASSWORD =hr
LE_URL =jdbc:oracle:thin:@localhost: 1521:5E

7. Right-click the UCPDenp. j ava tab in the code editor and select Add to
StockTickerProj.jpr.

Figure 8-6 Adding a Source File to a Project

| Ié] UCPDemo. java
Mazimize

Split Document
Mew Tab Group

Add to Working Set

Add to StockTickerProj. jpr

windows, .,

Close Ctil-F4
Close all Ctrl+Shift-Fd
Close Others

8. Retain the default value for the content path in the Add to Project Content screen
and click OK.

Figure 8-7 The Add to Project Content

& Add to Project Content P§|

Choose the content path to which wou want to add
D:\DEXElucpdemosistock-ticker-demolUCPDemo. java.

Content Paths:

DF Library Customizations
) Modelers

(") ADFm Sources

| Help | | (o] 4 J | Cancel |

9. Repeat steps 7 (page 8-4) and 8 (page 8-4) for Cl i ent Si mul at or . j ava,
DBConfi g.java, Ht t pServer. java,and DbConfi g. properti es files to add
them to the St ockTi cker Proj project.

10. Right-click the UCPDenp. j ava file in the Application Navigator window and click
Make.

11. Select Choose Active Run Configuration from the Run menu and then select
Manage Run Configurations.

8-4 Oracle Database 2 Day + Java Developer's Guide

Creating the Stock Ticker Application

Figure 8-8 The Run Menu Options

Use Current Working et (JEE only)

[Run StockTickerPraj, jpr
'ﬁ- Debug StackTickerProj.jpr

F11
Shift-F2

{@ CPU Profile StockTickerProj.jpr
{E] Memary Profile StockTickerProj.jor

UI Debug StockTickerPraoj.jpr
Debug with Diagram StockTickerPraj.jpr

[]

[]
i

@ Start Server Inskance
a Debug Server Instance

5]
|
JE

Terminate

erIupl ;

roelmpl():

12. Click Edit in the Project Properties screen for the St ockTi cker Pr 0j project.

Figure 8-9 The Project Properties Screen for the StockTickerProj Project

< Project Properties - C:\Developerimywork\StockTickerAppStockTickerProj\StockTickerProj. jpr,
(&)

[#- Project Source Paths
[+ ADF Model
----- ADF View

Run,/Debug/ Profile

() Use Custom Settings
() Use Project Settings

[Ank

[+ Business Components
[Compiler

----- Dependencies

----- Deployment

----- EJE Madule

----- Extension

[} Javadac

----- Java EE Application
----- J5P Taqg Libraries

----- 5P Visual Editor

----- Libraries and Classpath
----- Resource Bundle

Run Configurations:

Mew...

Restore Defaults

QK

i ’ Cancel

The Edit Run Configuration screen is displayed.

Creating a Universal Connection Pool 8-5

Observing the Output

13. Enter 8067 or any free port on your system in the Program Arguments field and
click OK.

Figure 8-10 The Edit Run Configuration Screen

& Edit Run Configuration

X

)| Launch Settings
Default Run Target:
| | | Erowse... |
Akterpt to Run Active File BeFore Default
ADF Task Flow]
®aLT Wirtual Machine: Jawa Options:
£} Tool Settings |client - | | |
(- Profiler
_____ FU Prograrn Argurnents:
© L Memory [s0e7 |
& [?ebugger Run Directory:
- Remaote
| | | Erowse. .. |
[Remote Debugging and Profiling
| Help | oK | | Cancel

14. Click OK to exit the Project Properties screen.

15. Right-click the UCPDenp. j ava file in the Application Navigator window and click
Run.

8.3 Observing the Output

When you run the application, initially it will spend a few seconds to store the stock
price data into the database. So, wait until the message". .. ready to go!" is
printed out on the screen as shown in Figure 8-11 (page 8-6).

Figure 8-11 Output of the Stock Ticker Application in JDeveloper Log

Stock data wrote for Zat Jun 25 13:320:00 IST 2011
Stock data wrote for Sat Jun 25 13:45:00 IST 2011
Stock data wrote for Sat Jun 25 14:00:00 IST Z011
Stock data wrote for Sat Jun 2L 14:15:00 IST 2011
Stock data wrote for Sat Jun 25 1<4:30:00 IST 2011
Stock data wrote for Zat Jun 25 14:45:00 IST 2011
Stock data wrote for Sat Jun 25 15:00:00 IST 2011
Stock data wrote for Sat Jun 25 15:15:00 IST Z011
Stock data wrote for Sat Jun ZE 15:30:00 IST 2011
Stock data wrote for Sat Jun 25 15:45:00 IST 2011
-..ready to go!

After the message is displayed, the UCP demo server is up and running and you can
use it by using the following steps:

1. Enter the following URL in the address bar of your browser:

http://1 ocal host: 8067

The Universal Connection Pool Demo page is displayed.

8-6 Oracle Database 2 Day + Java Developer's Guide

Observing the Output

Figure 8-12 Retrieving Information from the Universal Connection Pool Using
the Browser

& UCP stock ticker demo |

Home/

Universal Connection Pool Demo

What is Universal Connection Pool (UCP)?

* ASingle/Universal Connection Pool
2 Supports any type of connection: JDBC, JCA, LDAP
2 Supports any Database (Oracle, non-Cracle)
o Supports any App Server (Oracle, non-Oracle)
> Suppors sta ne deployment (BPEL, Toplink)
« Seamless Integration with the Oracle Database - RAC and Non-RAC
& DataGuard, FCF, RCLB, WLH, Connection Affinity to RAC instance etc.
» Addresses Apps/Fusion requirements to replace AOL connection pools and DataSource |ayer

About this Demo:

This demo is a stock ticker application that uses the Universal Connection Pool to retrieve stock price infermation from the database. Using this demo, you may view the Universal Connection Poal properties,
down the pool instance, view Universal Connectien Statistics etc.

Try the Demo:

Show UCP Properties
ck Price from Database
w UCP Statistics
Cvnamically Reconfigure UCP Properties
Run Massive Website Client Access Simulation

2. Click the links below the Try the Demo: section to retrieve stock price information
from the database.

Click Show UCP Properties to see the UCP properties:

Figure 8-13 The UCP Properties page

@ UICP properties

Home/Properties

UCP properties

URL jdbcioraclethin:@localhost 152 1XE
User hr
Passwaord hr

2

10
ConnectionWaitTimeout (sec) 5
InactiveConnectionTimeout (sec)]
TimeTolLiveConnectionTimeout (sec) 0
AbandonedConnectionTimeout (sech 0
TimeoutCheckinterval (sec) 30
MaxStatements]
ConnectionHarvestiaxCount 1
ConnectionHarvestTriggerCount 2147483647

FastConnectionFailoverEnabled (bool} false
ValidateConnectionOnBaorrow (boal) false
alidateConnection null

MaxConnectionReuseTime 0
MaxCeonnectionReuseCount 0

Click Get Stock Price from Database to run the stock ticker:

Creating a Universal Connection Pool 8-7

Observing the Output

Figure 8-14 The Stock Ticker Page on the Browser

& UCP stack ticker demo

Home Ticker

ticker: LRCO

time: Tue Jun 28 14:45:00 IST 2011

price: 0.04

{The price data is provided with 15 mins granularity)

Click Show UCP Statistics to see the UCP statistics:

Figure 8-15 The UCP Statistics Page on the Browser

(& UCP stastistics

Home/Statistics

UCP statistics

AvailableConnectionsCount
BorrawedConnectionsCaount:
TotalConnectionsCount
ConnectionsCreatedCount:
ConnectionsClosedCount
AbandonedConnectionsCount:
LabeledConnectionsCount
PendingRequestsCount
RemainingPoalCapacityCount:

Mo o o oMo oo ;M

PeakConnectionsCount: 1
PeakConnection\aitTime (mseck 0

serageBorrowedConnectionsCount: 0
serageConnection\VaitTime (msec) 0

CumulativeCaonnectionBorrowedCount
CumulativeCannectionReturnedCount:
CumulativeConnectionUseTime (msech

=
=)
=

CumulativeConnectionWWaitTime (msec)

CumulativeSuccessfulConnectionWaitTime (msecy:
CumulativeFailedConnectionWaitCount:
CumulativeFailedConnection\aitTime (msec):

4
4
1
0
CumulativeSuccessfulConnectionWaitCount: 4
0
0
0

Click Dynamically Reconfigure UCP Properties to update the UCP properties:

Note:

You can change the UCP properties in the browser by clicking the
Dynamically Reconfigure UCP Properties link. However, if you try to set a
property that is not relevant for a single instance Database, then an exception
may be thrown.

8-8 Oracle Database 2 Day + Java Developer's Guide

Observing the Output

Figure 8-16 The UCP Properties Update Page on the Browser

(& UCP properties

UCP properties

URL jdbcoraclethin:@lacal
User tulikadb

Password

WinPoolSize (conns)
WaxPoolSize (conns) 0

InitialPoolSize (conns)

ConnectionWWaitTimeout (sec)
InactiveConnectionTimeout (sec)
TimeToLiveConnectionTirmeout (sec)
AbandonedConnectionTimeout (sec)

TimeoutCheckinterval (sec)

WMaxStatements
ConnectionHarvestiaxCount
ConnectionHarvestTriggerCount 147483647
FastConnectionFailoverEnabled (bool) |false
ValidateConnectionCnBorrow (bool) |false

SQLForvalidateConnection null

MaxConnectionReuseTime

[

MaxConnectionReuseCount

submit

Click Run Massive Website Client Access Simulation to simulate many stock
ticker clients using the service simultaneously:

Figure 8-17 The Client Simulator Page on the Browser

(& The Massive Client Access Simulator

Home/ClientSimulator

The Massive Client Access Simulator

Ticker server URL http:f/lacalhost:8067tick|
Mumber of simulated users (threads) ta run
Mumber of ticker requests per user

This page provides the following fields:

Field Description

Ti cket server URL Specifies the URL of ticker web service
Nunber of sinulated users Specifies the number of concurrent threads
(threads) to run to run

Nurmber of ticket requests per Specifies number of ticker requests per
user thread to run

Creating a Universal Connection Pool 8-9

Observing the Output

8-10 2 Day + Java Developer's Guide

9

Building Global Applications

Building a global Internet application that supports different locales requires good
development practices. A locale refers to a national language and the region in which
the language is spoken. The application itself must be aware of user locale preferences
and present content following the cultural convention expected by the user. It is
important to present data with appropriate locale characteristics, such as using the
correct date and number formats. Oracle Database 12c Release 1 (12.1) is fully
internationalized to provide a global platform for developing and deploying global
applications.

This chapter discusses global application development in a Java and Oracle Database
12c Release 1 (12.1) environment. It addresses the basic tasks associated with
developing and deploying global Internet applications, including developing locale
awareness, constructing HTML content in the user-preferred language, and presenting
data following the cultural conventions of the user locale.

This chapter has the following topics:

* Developing Locale Awareness (page 9-1)

® Determining User Locales (page 9-3)

¢ Encoding HTML Pages (page 9-4)

* Organizing the Content of HTML Pages for Translation (page 9-5)
* DPresenting Data by User Locale Convention (page 9-6)

* Localizing Text on JSP Pages in JDeveloper (page 9-10)

9.1 Developing Locale Awareness

Global Internet applications must be aware of the user locale. Locale-sensitive
functions, such as date, time, and monetary formatting, are built into programming
environments such as Java and SQL. Applications can use locale-sensitive functions to
format the HTML pages according to the cultural conventions of the user locale.

Different programming environments represent locales in different ways. For
example, the French (Canadian) locale is represented as follows:

Building Global Applications 9-1

Developing Locale Awareness

Environment Representation Locale Explanation

Java Java locale object fr_CA Java uses the ISO language and
country code.
fr is the language code defined
in the ISO 639 standard. CAis the
country code defined in the ISO

3166 standard.
SQL and NLS_LANGUAGEand NLS_LANGUAGE Refer to the "Working in a Global
PL/SQL NLS_TERRI TORY =" CANADI AN Environment" chapter in the
parameters FRENCH" Oracle Database 2 Day Developer’s
NLS TERRI TOR Guide.

Y =" CANADA"

Table 9-1 (page 9-2) shows how some of the commonly used locales are defined in
Java and Oracle environments.

Table 9-1 Locale Representation in Java, SQL, and PL/SQL Programming

Environments
|

Locale Java NLS_LANGUAGE,
NLS_TERRITORY

Chinese (P.R.C) zh_CN S| MPLI FI ED CHI NESE,
CHI NA

Chinese (Taiwan) zh_TW TRADI TI ONAL CHI NESE,
TAI WAN

English (U.S.A) en_US AMERI CAN, AVERI CA

English (United Kingdom) en_GB ENGLI SH, UNI TED Kl NGDOM

French (Canada) fr_CA CANADI AN FRENCH, CANADA

French (France) fr_FR FRENCH, FRANCE

German (Germany) de_DE GERMAN, GERMANY

Italian (Italy) it_IT | TALI AN, | TALY

Japanese (Japan) ja_JP JAPANESE, JAPAN

Korean (Korea) ko_KR KOREAN, KOREA

Portuguese (Brazil) pt _BR BRAZI LI AN PORTUGUESE,
BRAZI L

Portuguese (Portugal) pt _PT PORTUGUESE, PORTUGAL

Spanish (Spain) es_ES SPANI SH, SPAI N

When writing global applications across different programming environments, the
user locale settings must be synchronized between environments. For example, Java

9-2 Oracle Database 2 Day + Java Developer's Guide

Determining User Locales

applications that call PL/SQL procedures should map the Java locales to the
corresponding NLS_LANGUAGE and NLS_TERRI TORY values and change the
parameter values to match the user locale before calling the PL/SQL procedures.

9.1.1 Mapping Between Oracle and Java Locales

The Oracle Globalization Development Kit (GDK) provides the Local eMapper class.
It maps equivalent locales and character sets between Java, IANA, ISO, and Oracle. A
Java application may receive locale information from the client that is specified in the
Oracle locale name. The Java application must be able to map to an equivalent Java
locale before it can process the information correctly.

Example 9-1 (page 9-3) shows how to use the Local eMapper class.

The GDK is a set of Java application programming interfaces (APIs) that provide
Oracle application developers with the framework to develop globalized Internet
applications. The GDK complements the existing globalization features in Java. It
provides the synchronization of locale behaviors between a middle-tier Java
application and the Oracle database.

Example 9-1 Mapping from a Java Locale to an Oracle Language and Territory

Local e local e = new Local e("fr", "CA");
String oralLang = Local eMapper. get OraLanguage(l ocal e);
String oraTerr = Local eMapper.getOraTerritory(locale);

9.2 Determining User Locales

In a global environment, your application may have to accept users with different
locale preferences. Determine the preferred locale of the user. Once that is known, the
application should construct HTML content in the language of the locale, and follow
the cultural conventions implied by the locale.

One of the most common methods in determining the user locale, is based on the
default ISO locale setting of the browser of the user. Usually a browser sends locale
preference settings to the HTTP server with the Accept - Language HTTP header. If
this header is set to NULL, then there is no locale preference information available and
the application should ideally fall back to a predefined application default locale.

Both JSP pages and Java Servlets can use calls to the Servlet API to retrieve the
Accept - Language HTTP header as shown in Example 9-2 (page 9-3).

This code gets the Accept - Language header from the HTTP request, extracts the
first ISO locale, and uses it as the user-desired locale.

Example 9-2 Determining User Locale in Java Using the Accept-Language Header

String lang = request. get Header (" Accept - Language")
StringTokeni zer st = new StringTokenizer(lang, ",")
if (st.hasMreTokens()) userLocal e = st.nextToken();

9.2.1 Locale Awareness in Java Applications

A Java locale object represents the locale of the corresponding user in Java. The Java
encoding used for the locale is required to properly convert Java strings to and from
byte data. You must consider the Java encoding for the locale if you make the Java
code aware of a user locale. There are two ways to make a Java method sensitive to the
Java locale and encoding;:

* Using the default Java locale and default Java encoding for the method

Building Global Applications 9-3

Encoding HTML Pages

¢ Explicitly specifying the Java locale and Java encoding for the method

When developing a global application, it is recommended to take the second approach
and explicitly specify the Java locale and Java encoding that correspond to the current
user locale. You can specify the Java locale object that corresponds to the user locale,
identified by user _| ocal e, in the get Dat eTi nel nst ance method as in

Example 9-3 (page 9-4).

Example 9-3 Explicitly Specifying User Locale in Java

Dat eFormat df = Dat eFor mat . get Dat eTi mel nst ance(Dat eFor mat . FULL, Dat eFor mat. FULL,
user | ocal e);
dateString = df.format(date); /* Format a date */

9.3 Encoding HTML Pages

The encoding of an HTML page is important information for a browser and an
Internet application. You can think of the page encoding as the character set used for
the locale that an Internet application is serving. The browser needs to know about the
page encoding so that it can use the correct fonts and character set mapping tables to
display the HTML pages. Internet applications need to know about the HTML page
encoding so they can process input data from an HTML form.

Instead of using different native encodings for the different locales, it is recommended
that UTF-8 (Unicode encoding) is used for all page encodings. Using the UTF-8
encoding not only simplifies the coding for global applications, but it allows for
multilingual content on a single page.

This section includes the following topics:
* Specifying the Page Encoding for HTML Pages (page 9-4)
e Specifying the Page Encoding in Java Servlets and JSP Pages (page 9-5)

9.3.1 Specifying the Page Encoding for HTML Pages

There are two ways to specify the encoding of an HTML page, one is in the HTTP
header, and the other is in the HTML page header.

Specifying the Encoding in the HTTP Header

Include the Cont ent - Type HTTP header in the HTTP specification. It specifies the
content type and character set as shown in Example 9-4 (page 9-4).

The char set parameter specifies the encoding for the HTML page. The possible
values for the char set parameter are the IANA names for the character encodings
that the browser supports.

Specifying the Encoding in the HTML Page Header

Use this method primarily for static HTML pages. Specify the character encoding in
the HTML header as shown in Example 9-5 (page 9-5).

The char set parameter specifies the encoding for the HTML page. As with the
Cont ent - Type HTTP Header, the possible values for the charset parameter are the
IANA names for the character encodings that the browser supports.

Example 9-4 Specifying Page Encoding in the HTTP Specification
Content-Type: text/htm; charset=utf-8

9-4 Oracle Database 2 Day + Java Developer's Guide

Organizing the Content of HTML Pages for Translation

Example 9-5 Specifying Page Encoding on an HTML Page
<meta http-equi v="Content-Type" content="text/htnl ;charset=utf-8">

9.3.2 Specifying the Page Encoding in Java Servlets and JSP Pages

You can specify the encoding of an HTML page in the Cont ent - Type HTTP header
in a JavaServer Pages (JSP) file using the cont ent Type page directive. For example:

<%@ page content Type="text/htm; charset=utf-8" %

This is the M ME type and character encoding that the JSP file uses for the response it
sends to the client. You can use any M ME type or IANA character set name that is
valid for the JSP container. The default M ME type is t ext / ht m , and the default
character set is ISO-8859-1. In the above example, the character set is set to UTF-8. The
character set of the cont ent Type page directive directs the JSP engine to encode the
dynamic HTML page and set the HTTP Cont ent - Ty pe header with the specified
character set.

For Java Servlets, you can call the set Cont ent Type method of the Servlet API to
specify a page encoding in the HTTP header. The doGet function in Example 9-6
(page 9-5) shows how you can call this method.

You should call the set Cont ent Type method before the get Wi t er method
because the get Wi t er method initializes an output stream writer that uses the
character set specified by the set Cont ent Type method call. Any HTML content
written to the writer and eventually to a browser is encoded in the encoding specified
by the set Cont ent Type call.

Example 9-6 Specifying Page Encoding in Servlets Using setContentType

public void doCet(Ht tpServletRequest request, HttpServletResponse response)
throws ServletException, |COException

{

/1 generate the M ME type and character set header
response. set Cont ent Type(“text/htm ; charset=utf-8");

/1 generate the HTM. page
Printwiter out = response.getWiter();
out. println("<HTM>");

out.println("</HM>");
}

9.4 Organizing the Content of HTML Pages for Translation

Making the user interface available in the local language of the user is one of the
fundamental tasks related to globalizing an application. Translatable sources for the
content of an HTML page belong to the following categories:

e Text strings hard-coded in the application code
e Static HTML files, images files, and template files such as CSS

* Dynamic data stored in the database

Building Global Applications 9-5

Presenting Data by User Locale Convention

This section discusses externalizing translatable content in the following;:
¢ Strings in Java Servlets and JSP Pages (page 9-6)
e Static Files (page 9-6)

e Data from the Database (page 9-6)

9.4.1 Strings in Java Servlets and JSP Pages

You should externalize translatable strings within Java Servlets and JSP pages into
Java resource bundles so that these resource bundles can be translated independent of
the Java code. After translation, the resource bundles carry the same base class names
as the English bundles, but with the Java locale name as the suffix. You should place
the bundles in the same directory as the English resource bundles for the Java resource
bundle look-up mechanism to function properly.

Because the user locale is not fixed in multilingual applications, they should call the
get Bundl e method by explicitly specifying a Java locale object that corresponds to
the user locale. The Java locale object is called user _| ocal e in the following
example:

Resour ceBundl e rb = ResourceBundl e. get Bundl e("resource", user_locale);
String helloStr = rh.getString("hello");

The above code will retrieve the localized version of the text string, hel | o, from the
resource bundle corresponding to the desired locale of the user.

See Also:

For more information about creating resource bundles in Java, refer to
Localizing Text on JSP Pages in JDeveloper (page 9-10).

9.4.2 Static Files

Static files such as HTMLs and GIFs are readily translatable. When these files are
translated, they should be translated into the corresponding language with UTF-8 as
the file encoding. To differentiate between the languages of the translated files, the
static files of different languages can be staged in different directories or with different
file names.

9.4.3 Data from the Database

Dynamic information such as product names and product descriptions are most likely
stored in the database regardless of whether you use JSP pages or Java Servlets. In
order to differentiate between various translations, the database schema holding this
information should include a column to indicate the language of the information. To
select the translated information, you must include the WHERE clause in your query to
select the information in the desired language of the query.

9.5 Presenting Data by User Locale Convention

Data in the application needs to be presented in a way that conforms to user
expectation, if not, the meaning of the data can sometimes be misinterpreted. For
example, '12/11/05" implies '11th December 2005' in the United States, whereas in the
United Kingdom it means '12th November 2005'. Similar confusion exists for number

9-6 Oracle Database 2 Day + Java Developer's Guide

Presenting Data by User Locale Convention

and monetary formats, for example, the period (.) is a decimal separator in the United
States, whereas in Germany, it is used as a thousand separator.

Different languages have their own sorting rules, some languages are collated
according to the letter sequence in the alphabet, some according to stroke count in the
letter, and there are some languages which are ordered by the pronunciation of the
words. Presenting data that is not sorted according to the linguistic sequence that your
users are accustomed to can make searching for information difficult and time-
consuming.

Depending on the application logic and the volume of data retrieved from the
database, it may be more appropriate to format the data at the database level rather
than at the application level. Oracle Database 12¢ Release 2 (12.2) offers many features
that help you to refine the presentation of data when the user locale preference is
known. The following sections include examples of locale-sensitive operations in SQL:

* Oracle Date Formats (page 9-7)
® Oracle Number Formats (page 9-8)
¢ Oracle Linguistic Sorts (page 9-9)

® Oracle Error Messages (page 9-9)

9.5.1 Oracle Date Formats

There are three different date presentation formats in Oracle Database 12c Release 2
(12.2). These are standard, short, and long dates. Example 9-7 (page 9-7) illustrates

the difference between the short data and long date formats for both United States and
Germany.

Example 9-7 Difference Between Date Formats by Locale (United States and
Germany)

SQ> ALTER SESSI ON SET NLS_TERRI TORY=america NLS_LANGUAGE=aneri can;
Session al tered.

SQ.> SELECT enpl oyee_i d Enpl D,
2 SUBSTR(first_nanme,1,1)||"."||last_name "EnpNane",
3 TOCHAR(hire_date,'DS') "Hiredate",
4 TOCHAR(hire_date,'DL") "Long HireDate"
5 FROM enpl oyees
6* WHERE enpl oyee_id <105;

EMPI D EnpNane Hredate Long HireDate
100 S.King 06/ 17/ 1987 \Wednesday, June 17, 1987
101 N. Kochhar 09/ 21/ 1989 Thursday, Septenber 21, 1989
102 L. De Haan 01/ 13/ 1993 Wednesday, January 13, 1993
103 A Hunol d 01/03/ 1990 Wednesday, January 3, 1990
104 B. Ernst 05/ 21/ 1991 Tuesday, May 21, 1991

SQ.> ALTER SESSI ON SET SET NLS_TERRI TORY=ger many NLS_LANGUAGE=ger man;
Session al tered.
SQ.> SELECT enpl oyee_i d Enpl D,

2 SUBSTR(first_name,1,1)||"."||last_name "EnpNane",
3 TOCHAR(hire_date,'DS') "Hiredate",

Building Global Applications 9-7

Presenting Data by User Locale Convention

4 TOCHAR(hire_date,'DL") "Long HireDate"
5 FROM enpl oyees
6* WHERE enpl oyee_id <105;

EMPI D EnpNane Hiredate Long HireDate
100 S. King 17.06.87 Mttwoch, 17. Juni 1987
101 N. Kochhar 21.09.89 Donnerstag, 21. September 1989
102 L. De Haan 13.01.93 Mttwoch, 13. Januar 1993
103 A Hunol d 03.01.90 Mttwoch, 3. Januar 1990
104 B. Ernst 21.05.91 Dienstag, 21. Mai 1991

9.5.2 Oracle Number Formats

Example 9-8 (page 9-8) illustrates the differences in the decimal character and group
separator between the United States and Germany.

Example 9-8 Difference Between Number Formats by Locale (United States and
Germany)

SQ> ALTER SESSI ON SET SET NLS TERRI TORY=aneri ca;
Session al tered.

SQ.> SELECT enpl oyee_i d Enpl D,
2 SUBSTR(first_name, 1,1)||"."||last_name "EnpNane",
3 TO CHAR(sal ary, '99(999D99') "Sal ary"
4 FROM enpl oyees
5% WHERE enpl oyee_id <105

EMPI D EnpNane Sal ary
100 S.King 24,000. 00
101 N. Kochhar 17, 000. 00
102 L. De Haan 17, 000. 00
103 A Hunol d 9, 000. 00
104 B. Ernst 6, 000. 00

SQ.> ALTER SESSI ON SET SET NLS_TERRI TORY=ger many;
Session al tered.

SQ.> SELECT enpl oyee_i d Enpl D,
2 SUBSTR(first_name, 1,1)||"."||last_name "EnpNane",
3 TO CHAR(sal ary, '99(999D99') "Sal ary"
4 FROM enpl oyees
5% WHERE enpl oyee_id <105

EMPI D EnpNane Sal ary
100 S.King 24.000, 00
101 N. Kochhar 17. 000, 00
102 L. De Haan 17. 000, 00
103 A Hunol d 9. 000, 00
104 B. Ernst 6. 000, 00

9-8 Oracle Database 2 Day + Java Developer's Guide

Presenting Data by User Locale Convention

9.5.3 Oracle Linguistic Sorts

Spain traditionally treats 'ch’, 'll' as well as 'ii' as letters of their own, ordered after c, 1
and n respectively. Example 9-9 (page 9-9) illustrates the effect of using a Spanish
sort against the employee names Chen and Chung.

Example 9-9 Variations in Linguistic Sorting (Binary and Spanish)

SQ.> ALTER SESSI ON SET NLS_SORT=bi nary;
Session al tered.

SQ.> SELECT enpl oyee_i d Enpl D,
2 | ast_nane "Last Nange"
3 FROM enpl oyees
4 \WWHERE | ast _name LIKE ' C%
5* CORDER BY | ast _name

EMPI D Last Nane

187 Cabrio

148 Canbraul t
154 Canbraul t
110 Chen

188 Chung

119 Col nenares

6 rows selected.
SQ.> ALTER SESSI ON SET NLS_SORT=spani sh_m
Session al tered.

SQ.> SELECT enpl oyee_i d Enpl D,
2 | ast_nane "Last Nane"
3 FROM enpl oyees
4 \WWHERE | ast _name LIKE ' C%
5% CORDER BY | ast _name

EMPI D Last Nane

187 Cabrio

148 Canbraul t
154 Canbraul t
119 Col nenares
110 Chen

188 Chung

6 rows selected.

9.5.4 Oracle Error Messages

The NLS_LANGUAGE parameter also controls the language of the database error
messages that are returned from the database. Setting this parameter prior to
submitting your SQL statement will ensure that local language-specific database error
messages will be returned to the application.

Consider the following server message:

ORA-00942: table or view does not exist

Building Global Applications 9-9

Localizing Text on JSP Pages in JDeveloper

When the NLS_LANGUAGCE parameter is set to French, the server message appears as
follows:

ORA-00942: table ou vue inexistante
Related Topics:

Oracle Database Globalization Support Guide

9.6 Localizing Text on JSP Pages in JDeveloper

Your Java application can make use of resource bundles, to provide different localized
versions of the text used on your JSP pages.

Resource bundles contain locale-specific objects. When your program needs a locale-
specific resource, such as some text to display on a page, your program can load it
from the resource bundle that is appropriate for the current user locale. In this way,
you can write program code that is largely independent of the user locale isolating the
actual text in resource bundles.

In outline, the resource bundle technology has the following features:

* Resource bundles belong to families whose members share a common base name,
but whose names also have additional components that identify their locales. For
example, the base name of a family of resource bundles might be MyResour ces.
A locale-specific version for German, for example, would be called
MyResour ces_de.

* Each resource bundle in a family contains the same items, but the items have been
translated for the locale represented by that resource bundle. For example, a
St ri ng used on a button might in MyResour ces be defined as Cancel , but in
MyResour ces_de as Abbr echen.

* You can make specializations for different resources for different countries, for
example, for the German language (de) in Switzerland (CH).

To use resource bundles in your application, you must do the following:
1. Create the resource bundles.

2. In pages that have visual components, identify the resource bundles you will be
using on the page.

3. For each item of text you want to display on your pages, retrieve the text from the
resource bundle instead of using hard-coded text.

See Also:

http://docs.oracle.confjavase/ 7/ docs/ api/javal/ util/
Resour ceBundl e. ht m

In the sample application, resource bundles can be used in the following places:

* Headings and labels on JSP pages. In this case, rather than entering text directly
on the pages, you can use a scriptlet to find the text.

9-10 Oracle Database 2 Day + Java Developer's Guide

http://docs.oracle.com/javase/7/docs/api/java/util/ResourceBundle.html
http://docs.oracle.com/javase/7/docs/api/java/util/ResourceBundle.html

Localizing Text on JSP Pages in JDeveloper

¢ Values for buttons and other controls. In this case, set the val ue property of the
button to an expression that retrieves the text from the resource bundle

This section covers the following tasks:
¢ Creating a Resource Bundle (page 9-11)

¢ Using Resource Bundle Text on JSP Pages (page 9-12)

9.6.1 Creating a Resource Bundle

To create a default resource bundle:

1. Create a new Java class called MyResour ces, that extends class
java. util.ListResourceBundl e.

2. Modify the get Cont ent s method in the following way:

public Object[][] getContents() {
return contents;

}
3. Declare an object array like the following:

static final Cbject[][] contents = {
b
}

4. Add an entry for each item of text you need on your pages, giving a key and the
text for that key. For example, in the following example, the comments indicate the
strings that must be translated into other languages:

static final Qoject[][] contents = {
[/ LOCALIZE TH' S
{" ConpanyNane", "AnyCo Corporation"},
{"SiteName", "HR Application"},
{"FilterButton", "Filter"},
{"Updat eButton", "Update"},
/1 END OF MATERI AL TO LOCALI ZE

b

The complete resource bundle class should look similar to that shown in the
following code example.

Creating a Resource Bundle Class

public class MyResources extends ListResourceBundle {
public MyResources() {
super();

}

protected Qoject[][] getContents() {
return contents;

1

static final Qoject[][] contents = {
/1 LOCALI ZE TH S
{" ConpanyNane", "AnyCo Corporation"},
{"SiteName", "HR Application"},
{"FilterButton", "Filter"},
{"Updat eButton", "Update this Record"},
/1 END OF MATERI AL TO LOCALI ZE

Building Global Applications 9-11

Localizing Text on JSP Pages in JDeveloper

b
}

To globalize your application, you must create the locale-specific versions of the
resource bundle for the different locales you are supporting, containing text for the
items in each language.

9.6.2 Using Resource Bundle Text on JSP Pages

To use the text defined in a resource bundle on your JSP pages:

1.

2.

Open the JSP page you want to work on in the Visual Editor, such as edi t . j sp.

Add a jsp:usebean tag before the first heading. Enter myResour ces as the ID, and
hr. MyResour ces as the Class. Set the Scope to sessi on, and click OK.

Note:

If you do not compile the MyResour ces. j ava file till this point, then you
will get an error symbol on the bean because the MyResour ces. ¢l ass is not
created till now. Open the MyResour ces. j ava file and compile it.

Drag a jsp:scriptlet to the page, where you want the resource bundle text to be
displayed, for example immediately next to the first heading.

In the Insert Scriptlet dialog, enter the script for retrieving text from the resource
bundle:

out.println(nyResources. get String("ConpanyNang") + ": " +
myResour ces. get String("SiteNane"));

Remove the original heading of the page, that is, AnyCo Cor por ati on: HR
Appl i cation.

If you select the Source tab below the Visual Editor, you should see code for the
page similar to the following:

<j sp: useBean i d="nyResources" cl ass="hr. M/Resour ces" scope="session"/>
<h2 align="center">

<% out.println(myResources.get String("ConpanyNane") + ": " +
myResour ces. get String("SiteNane")); %
</ h2>

To use resource bundle text as the label for a button, double-click the button in the
Visual Editor. In the button properties dialog, for the Value parameter of the
button, enter the following script:

<% out. println(nyResources. get String("UpdateButton")); %
If you view the Source code for the page, you will see code similar to the following:

<input type="submt"
val ue=<% out . print| n(nmyResour ces. get String("Updat eButton")); % />

If you now run your application, you will see the text you defined in your resource
bundle displayed on the page.

9-12 Oracle Database 2 Day + Java Developer's Guide

A

absolute positioning in result sets, 4-3
accessor methods, 5-2
application navigation

HTML submit buttons, 5-23

jsp

forward tags, 5-23

Application Navigator

using, 3-5

B

bind variables
IN, OUT, and IN OUTparameters, 6-3
using, 6-2

C

CLI, 1-1
closing objects
application, 7-2
closeAll method, 7-1, 7-2
Connection, 7-1
DataHandler, 7-1
DataHandler java, 7-2
Statement, /-1
Component Palette, 1-4
connecting from JDeveloper
driver, specifying, 3-2
host name, specifying, 3-2
JDBC port, specifying, 3-2
service name, specifying, 3-2
connecting to Oracle Database 12c Release 1
default service, 3-8
using Java, 3-6
using JDeveloper, 1-2
connecting to Oracle Databasel2c Release 1
overview of, 3-6
Css
list of components, 4-13
cursor variables

using, 6-9

D

Index

Database Navigator
browsing data, 3-3
database objects, editing, 3-4
table data, viewing, 3-4
table definition, viewing, 3-4
database URLs
driver_type, 3-8
syntax, 3-7
thin-style service names, 3-8
Datasource object
properties, 3-6
url property, 3-7
DataSource object, 3-7
deafault service
URLs, examples, 3-8
default service
syntax, 3-8
using, 3-8
deleting data
creating a method, 5-19
handling a delete action, 5-20
link to delete, 5-20
deployment descriptor file, 5-23
dynamic SQL
OraclePreparedStatement, 4-2, 6-1
using, 6-1

E

editjsp, 1-6
employees.jsp, 1-5, 4-11
Entry Level of the SQL-92, 1-1
environment variables

specifying, 2-4
environment variables, checking, 2-4
exception handling

catch block, 5-21, 5-22

handling any SQLException, 5-22

Index-1

E JavaBean (continued)
Employee java, 5-2

filtering data, 4-19 Employees table, 5-2
properties and methods, creating, 5-2
G sample application, 5-1
JavaServer Pages, 2-3
getDBConnection method, 4-5 JDBC, 1-1
globalization classes file, 2-4 JDBC drivers
driver version, determining, 2-4
H JDBC escape syntax, 6-3
JDeveloper
HR account API support, 3-10
testing, 2-2 application templates, 3-4
HR user aCCOUHt. . application, creating, 3-5
sample. application, 2-1 applications, 3-4
unlocking, 2-1 browsing data, 3-3
HTML forms, 4-9 Component Palette, 1-4
HTML tags, 4-9 Create Bean dialog box, 5-2

creating a Java Class, 3-9

| database, connecting, 3-1, 3-2
database, disconnecting, 3-2
database, reconnecting, 3-2
. Or.acle JDeveloper, 2-3 default layout, 1-3
importing packages

import dialog box, 4-17
IN parameters, 6-2
inserting data

handle an insert action, 5-17

insert_action.jsp, 5-15

insert.jsp, 5-16

JSP, 5-15

link to insert page, 5-15

method, creating, 5-14

new data, entering, 5-15
installation

directories and files, 2-3

verifying on the database, 2-3
integrated development environment, 2-3

IDE

installation guide, 2-5

Java Code Insight, 1-4

Java Source Editor, 1-4

Java Visual Editor, 1-4
JavaBean, 5-2

JDeveloper Database Navigator, 3-1
look and feel, 4-13
navigators, 1-3

online documentation, 2-5
platform support, 2-5
project, creating, 3-5
projects, 3-4

Property Inspector, 1-4
scriptlet representation, 4-15

tools, 1-4
user interface, 1-3
J windows, 1-3
J2SE JDeveloper Database Navigator

browsing connections, 3-1

installing, 2-2
viewing database objects, 3-1

Java class)

creating, 3-9 Jsp

DataHandler, 3-10 useBean tag, 4-14
Java Database Connectivity, 1-1 JSP, 2-3
Java libraries JSP pages

adding in JDeveloper, 3-10 creating, 4-7, 4-9

JSP runtime library, 3-11 custom tag libraries, 4-7
Oracle JDBC library, 3-10 deploying, 2-3
Java Visual Editor, 1-4 elements used, 4-8

handling login action, 4-28
HTML forms, 4-9

HTML tags, 4-7, 4-9
Java-based scriptlets, 4-7
JSP tags, 4-7

JavaBean
Create Bean dialog box, 5-2
creating, 5-1
creating in JDeveloper, 5-1
defining, 5-2

Index-2

JSP pages (continued)
presentation, 4-8
scriptlets, 4-9
Standard JSP tags, 4-7
static content, adding, 4-10
style sheet, adding, 4-12
updating data, 5-10

JSP tags, 4-7,4-8

L

libraries

adding, 3-11

Project Properties dialog box, 3-11
login jsp, 1-5

N

next method, 4-3

o

Oracle Database 12c Release 1
closing objects, 7-1
Oracle Database 12c Release 1 installation
installed directories and files, 2-3
Oracle Database 12c Release 2
connecting to, 1-1
installation, 2-3
installation guides, 2-1
release notes, 2-1
verifying, 2-3
verifying installation, 2-3
Oracle Database 12¢ Release 2 (12.2)
unconnecting, 7-1
Oracle Database 12¢ Release 2 installation
platform-specific, 2-3
Oracle JDBC packages
oraclejdbc, 1-2
oracle.sql, 1-2
Oracle JDBC Packages, 1-2
Oracle JDBC support, 1-1
Oracle JDBC Thin Driver
Type 1V, 1-2
Oracle JDeveloper
installing, 2-5
Oracle JDeveloper Studio Edition, 2-5
Oracle REF CURSOR Type, 6-10
Oracle Weblogic Server, 3-11
Oracle WebLogic Server, 2-3
ORACLE_HOME directory, 2-3
oraclejdbe, 1-2, 3-11
oraclejdbc.pool, 3-11
oracle.sql
data types, 1-2
Oracle JDBC library, 3-11
UCS-2 character set, 1-2

oracle.sql.Datum, 1-2

OracleCallableStatement
creating, 6-2
using, 6-2

OraclePreparedStatement
bind variables, 6-2
creating, 6-1
precompiled, 6-2
using, 6-1

P

positioning in result sets, 4-3
Project Properties dialog box, 3-11
Property Inspector, 1-4

Q

querying data
DataHandler java, 4-4
Java application, 4-4
JDBC concepts, 4-1
Log window output, 4-7
output, 4-7
query methods, 4-2
results, testing, 4-5
trace message, 4-7

R

REF CURSOR
accessing data, 6-10
declaring, 6-10
Oracle REF CURSOR Type, 6-10
REF CURSORs, 6-10
relative positioning in result sets, 4-3
result set enhancements
positioning, 4-3
scrollability, 4-3
sensitivity to database changes, 4-3
updatability, 4-3
result sets
declaring, 4-4
features, 4-3
ResultSet object
closing, 7-1
next method, 4-3

S

sample application
classes, 1-4
connecting, 3-6
editjsp, 1-6
employees.jsp, 1-5
error messages, 4-26

Index-3

sample application (continued)
failed logins, 4-26
HR user account, 2-1
JSPs, 1-4
login functionality, 4-23
login interface, 4-27
login page, 4-25
login jsp, 1-5
overview, 1-4
security features, 4-23
testing, 1-6
user authentication, 4-23
scriplets, 4-9
scriptlet
representation in JDeveloper, 4-15
scriptlets, 4-9
scrollability in result sets, 4-3
sensitivity in result sets to database changes, 4-3
Statement object
query methods, 4-2
stored function
calling, 6-3
stored function, creating, 6-3
stored procedures
calling, 6-3
creating, 6-4
Database Navigator, 6-4
JDeveloper, 6-4
style sheets, using, 4-8, 4-12

Index-4

T

testing
connection method, 4-5
filtered data, 4-20
login feature, 4-29
query results, 4-5

U

UCP, 8-1
ucp.jar, 8-2
updatability in result sets, 4-3
updating data

Java class, 5-4

JSP pages, 5-10

update action, handling, 5-12
user authentication, 4-23

w

Web server
Apache Tomcat, 2-3
servlet container, 2-3
web.xml, 5-23

X

X/Open SQL Call Level Interface, 1-1

	Contents
	List of Tables
	List of Tables
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Using Java with Oracle Database
	1.1 Using Java to Connect to Oracle Database 12c Release 2 (12.2)
	1.1.1 Oracle JDBC Thin Driver
	1.1.2 Oracle JDBC Packages

	1.2 Using JDeveloper to Create JDBC Applications
	1.2.1 JDeveloper User Interface
	1.2.2 JDeveloper Tools

	1.3 Overview of Sample Java Application
	1.4 Resources

	2 Getting Started with the Application
	2.1 What You Need to Install
	2.1.1 Oracle Database 12c Release 2 (12.2)
	2.1.1.1 Unlocking the HR Schema for the JDBC Application

	2.1.2 J2SE or JDK
	2.1.3 Integrated Development Environment
	2.1.4 Web Server

	2.2 Verifying the Oracle Database 12c Release 2 (12.2) Installation
	2.2.1 Checking Installed Directories and Files
	2.2.2 Checking the Environment Variables
	2.2.3 Determining the JDBC Driver Version

	2.3 Installing Oracle JDeveloper

	3 Connecting to Oracle Database 12c Release 2 (12.2)
	3.1 Connecting to Oracle Database from JDeveloper
	3.1.1 JDeveloper Database Navigator
	3.1.2 Creating a Database Connection
	3.1.3 Browsing the Data Using the Database Navigator

	3.2 Setting Up Applications and Projects in JDeveloper
	3.2.1 Using the JDeveloper Application Navigator
	3.2.2 Creating an Application and a Project
	3.2.3 Viewing the Javadoc and Source Code Available in the Project Scope

	3.3 Connecting to Oracle Database from a Java Application
	3.3.1 Overview of Connecting to Oracle Database
	3.3.2 Specifying Database URLs
	3.3.2.1 Using the Default Service Feature of the Oracle Database

	3.3.3 Creating a Java Class in JDeveloper
	3.3.4 Java Libraries
	3.3.4.1 Overview of the Oracle JDBC Library
	3.3.4.2 Overview of the JSP Runtime Library

	3.3.5 Adding JDBC and JSP Libraries
	3.3.6 Importing JDBC Packages
	3.3.7 Declaring Connection-Related Variables
	3.3.8 Creating the Connection Method

	4 Querying for and Displaying Data
	4.1 Overview of Querying for Data in Oracle Database
	4.1.1 SQL Statements
	4.1.2 Query Methods for the Statement Object
	4.1.3 Result Sets
	4.1.3.1 Features of ResultSet Objects
	4.1.3.2 Summary of Result Set Object Types

	4.2 Querying Data from a Java Application
	4.2.1 Creating a Method in JDeveloper to Query Data
	4.2.2 Testing the Connection and the Query Methods

	4.3 Creating JSP Pages
	4.3.1 Overview of Page Presentation
	4.3.1.1 JSP Tags
	4.3.1.2 Scriptlets
	4.3.1.3 HTML Tags
	4.3.1.4 HTML Forms

	4.3.2 Creating a Simple JSP Page
	4.3.3 Adding Static Content to a JSP Page
	4.3.4 Adding a Style Sheet to a JSP Page

	4.4 Adding Dynamic Content to the JSP Page: Database Query Results
	4.4.1 Adding a JSP useBean Tag to Initialize the DataHandler Class
	4.4.2 Creating a Result Set
	4.4.3 Adding a Table to the JSP Page to Display the Result Set

	4.5 Filtering a Query Result Set
	4.5.1 Creating a Java Method for Filtering Results
	4.5.2 Testing the Query Filter Method
	4.5.3 Adding Filter Controls to the JSP Page
	4.5.4 Displaying Filtered Data in the JSP Page

	4.6 Adding Login Functionality to the Application
	4.6.1 Creating a Method to Authenticate Users
	4.6.2 Creating a Login Page
	4.6.3 Preparing Error Reports for Failed Logins
	4.6.4 Creating the Login Interface
	4.6.5 Creating a JSP Page to Handle Login Action

	4.7 Testing the JSP Page

	5 Updating Data
	5.1 Creating a JavaBean
	5.1.1 Creating a JavaBean in JDeveloper
	5.1.2 Defining the JavaBean Properties and Methods

	5.2 Updating Data from a Java Class
	5.2.1 Creating a Method to Identify an Employee Record
	5.2.2 Creating a Method to Update Employee Data
	5.2.3 Adding a Link to Navigate to an Update Page
	5.2.4 Creating a JSP Page to Edit Employee Data
	5.2.5 Creating a JSP Page to Handle an Update Action

	5.3 Inserting an Employee Record
	5.3.1 Creating a Method to Insert Data
	5.3.2 Adding a Link to Navigate to an Insert Page
	5.3.3 Creating a JSP Page to Enter New Data
	5.3.4 Creating a JSP Page to Handle an Insert Action

	5.4 Deleting an Employee Record
	5.4.1 Creating a Method for Deleting Data
	5.4.2 Adding a Link to Delete an Employee
	5.4.3 Creating a JSP Page to Handle a Delete Action

	5.5 Exception Handling
	5.5.1 Adding Exception Handling to Java Methods
	5.5.2 Creating a Method for Handling Any SQLException

	5.6 Navigation in the Sample Application
	5.6.1 Creating a Starting Page for an Application

	6 Enhancing the Application: Advanced JDBC Features
	6.1 Using Dynamic SQL
	6.1.1 Using OraclePreparedStatement
	6.1.2 Using OracleCallableStatement
	6.1.3 Using Bind Variables

	6.2 Calling Stored Procedures
	6.2.1 Creating a PL/SQL Stored Procedure in JDeveloper
	6.2.2 Creating a Method to Use the Stored Procedure
	6.2.3 Enabling Users to Choose the Stored Procedure
	6.2.4 Calling the Stored Procedure from the Application

	6.3 Using Cursor Variables
	6.3.1 Oracle REF CURSOR Type Category
	6.3.2 Accessing REF CURSOR Data
	6.3.3 Using REF CURSOR in the Sample Application
	6.3.3.1 Creating a Package in the Database
	6.3.3.2 Creating a Database Function
	6.3.3.3 Calling the REF CURSOR from a Method
	6.3.3.4 Displaying a Dynamically Generated List

	7 Getting Unconnected from Oracle Database 12c Release 2 (12.2)
	7.1 Creating a Method to Close All Open Objects
	7.2 Closing Open Objects in the Application

	8 Creating a Universal Connection Pool
	8.1 Setting JDeveloper Project Properties
	8.2 Creating the Stock Ticker Application
	8.3 Observing the Output

	9 Building Global Applications
	9.1 Developing Locale Awareness
	9.1.1 Mapping Between Oracle and Java Locales

	9.2 Determining User Locales
	9.2.1 Locale Awareness in Java Applications

	9.3 Encoding HTML Pages
	9.3.1 Specifying the Page Encoding for HTML Pages
	9.3.2 Specifying the Page Encoding in Java Servlets and JSP Pages

	9.4 Organizing the Content of HTML Pages for Translation
	9.4.1 Strings in Java Servlets and JSP Pages
	9.4.2 Static Files
	9.4.3 Data from the Database

	9.5 Presenting Data by User Locale Convention
	9.5.1 Oracle Date Formats
	9.5.2 Oracle Number Formats
	9.5.3 Oracle Linguistic Sorts
	9.5.4 Oracle Error Messages

	9.6 Localizing Text on JSP Pages in JDeveloper
	9.6.1 Creating a Resource Bundle
	9.6.2 Using Resource Bundle Text on JSP Pages

	Index

