Oracle® Database
SQL Language Reference

12c¢ Release 2 (12.2)
E49448-15
October 2017

ORACLE"

Oracle Database SQL Language Reference, 12¢ Release 2 (12.2)
E49448-15

Copyright © 1996, 2017, Oracle and/or its affiliates. All rights reserved.
Primary Author: Mary Beth Roeser

Contributors: Drew Adams, David Alpern, Angela Amor, Geeta Arora, Vikas Arora, Lance Ashdown, Hermann
Baer, Prasad Bagal, Nigel Bayliss, Eric Belden, Timothy Chien, Eugene Chong, George Eadon, Amit
Ganesh, Barb Glover, Naveen Gopal, Mike Hallas, Beda Hammerschmidt, Min-Hank Ho, Patricia Huey,
Chandrasekharan lyer, Peter Knaggs, Srinath Krishnaswamy, Vasudha Krishnaswamy, Andre Kruglikov,
Tom Kyte, Huagang Li, Yunrui Li, Bryn Llewellyn, Rich Long, Scott Lynn, Vineet Marwah, David McDermid,
Robert McGuirk, Jan Michels, Rahil Mir, Gopal Mulagund, Sujatha Muthulingam, Padmaja Potineni, Hanlin
Qian, Ananth Raghavan, Vivek Raja, Ashish Ray, Jia Shi, Wayne Smith, Sachin Sonawane, Jim Stenoish,
Sankar Subramanian, Sarika Surampudi, Randy Urbano, Peter Wahl, Charles Wetherell, Andy Witkowski,
Sergiusz Wolicki, Tsae-feng Yu, Mohamed Zait, Fred Zemke, Wei Zhang, Weiran Zhang, Roopesh Ashok
Kumar

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience XXVi
Documentation Accessibility XXVi
Related Documents XXVi
Conventions XXVil

Changes in This Release for Oracle Database SQL Language

Reference

Changes in Oracle Database 12c Release 2 (12.2.0.1) XXViii
Changes in Oracle Database 12c Release 1 (12.1.0.2) x|
Changes in Oracle Database 12c Release 1 (12.1.0.1) xlii

1 Introduction to Oracle SQL

1.1 History of SQL 1-1
1.2 SQL Standards 1-1

1.2.1 How SQL Works 1-2

1.2.2 Common Language for All Relational Databases 1-2
1.3 Using Enterprise Manager 1-2
1.4 Lexical Conventions 1-3
1.5 Tools Support 1-3

2 Basic Elements of Oracle SQL

2.1 Data Types 2-1
2.1.1 Oracle Built-in Data Types 2-6
2.1.1.1 Character Data Types 2-9

2.1.1.2 Numeric Data Types 2-13

2.1.1.3 LONG Data Type 2-18

2.1.1.4 Datetime and Interval Data Types 2-19

2.1.15 RAW and LONG RAW Data Types 2-28

2.1.1.6 Large Object (LOB) Data Types 2-29

ORACLE iii

2.1.1.7 Extended Data Types 2-32

2.1.2 Rowid Data Types 2-33
2.1.2.1 ROWID Data Type 2-33
2.1.2.2 UROWID Data Type 2-34

2.1.3 ANSI, DB2, and SQL/DS Data Types 2-34

2.1.4 User-Defined Types 2-36
2.1.4.1 Object Types 2-36
2.1.4.2 REF Data Types 2-37
2.1.43 Varrays 2-37
2.1.4.4 Nested Tables 2-37

2.1.5 Oracle-Supplied Types 2-38

2.1.6 Any Types 2-38
2.1.6.1 ANYTYPE 2-38
2.1.6.2 ANYDATA 2-38
2.1.6.3 ANYDATASET 2-38

2.1.7 XML Types 2-39
2.1.7.1 XMLType 2-39
2.1.7.2 URI Data Types 2-39
2.1.7.3 URIFactory Package 2-40

2.1.8 Spatial Types 2-41
2181 SDO_GEOMETRY 2-41
2.1.8.2 SDO_TOPO_GEOMETRY 2-41
2.1.8.3 SDO_GEORASTER 2-42

2.1.9 Media Types 2-42

2.2 Data Type Comparison Rules 2-44

2.2.1 Numeric Values 2-44

2.2.2 Datetime Values 2-44

2.2.3 Binary Values 2-44

2.2.4 Character Values 2-45

2.2.5 Object Values 2-48

2.2.6 Varrays and Nested Tables 2-48

2.2.7 Data Type Precedence 2-48

2.2.8 Data Conversion 2-48
2.2.8.1 Implicit and Explicit Data Conversion 2-48
2.2.8.2 Implicit Data Conversion 2-49
2.2.8.3 Implicit Data Conversion Examples 2-51
2.2.8.4 Explicit Data Conversion 2-52

2.2.9 Security Considerations for Data Conversion 2-53

2.3 Literals 2-55

2.3.1 Text Literals 2-55

2.3.2 Numeric Literals 2-57

ORACLE iv

2.3.2.1 Integer Literals 2-57

2.3.2.2 NUMBER and Floating-Point Literals 2-57
2.3.3 Datetime Literals 2-60
2.3.4 Interval Literals 2-64

2.3.4.1 INTERVAL YEAR TO MONTH 2-64

2.3.4.2 INTERVAL DAY TO SECOND 2-65

2.4 Format Models 2-67
2.4.1 Number Format Models 2-68

2.4.1.1 Number Format Elements 2-68
2.4.2 Datetime Format Models 2-71

2.4.2.1 Datetime Format Elements 2-71

2.4.2.2 Datetime Format Elements and Globalization Support 2-77

2.4.2.3 1SO Standard Date Format Elements 2-77

2.4.2.4 The RR Datetime Format Element 2-77

2.4.2.5 Datetime Format Element Suffixes 2-78
2.4.3 Format Model Modifiers 2-79

2.4.3.1 Format Model Examples 2-80
2.4.4 String-to-Date Conversion Rules 2-82
2.45 XML Format Model 2-83

2.5 Nulls 2-84
2.5.1 Nulls in SQL Functions 2-84
2.5.2 Nulls with Comparison Conditions 2-84
2.5.3 Nulls in Conditions 2-85

2.6 Comments 2-85
2.6.1 Comments Within SQL Statements 2-86
2.6.2 Comments on Schema and Nonschema Objects 2-87
2.6.3 Hints 2-87
2.6.4 Alphabetical Listing of Hints 2-93

2.6.41 ALL_ROWS Hint 2-94

2.6.4.2 APPEND Hint 2-94

2.6.4.3 APPEND_VALUES Hint 2-95

2.6.4.4 CACHE Hint 2-95

2.6.4.5 CHANGE_DUPKEY_ERROR_INDEX Hint 2-96

2.6.4.6 CLUSTER Hint 2-96

2.6.4.7 CLUSTERING Hint 2-97

2.6.4.8 CONTAINERS Hint 2-97

2.6.49 CURSOR_SHARING_EXACT Hint 2-98

2.6.4.10 DISABLE_PARALLEL_DML Hint 2-98

2.6.4.11 DRIVING_SITE Hint 2-98

2.6.4.12 DYNAMIC_SAMPLING Hint 2-99

2.6.4.13 ENABLE_PARALLEL_DML Hint 2-99

ORACLE Y

ORACLE

2.6.4.14
2.6.4.15
2.6.4.16
2.6.4.17
2.6.4.18
2.6.4.19
2.6.4.20
2.6.4.21
2.6.4.22
2.6.4.23
2.6.4.24
2.6.4.25
2.6.4.26
2.6.4.27
2.6.4.28
2.6.4.29
2.6.4.30
2.6.4.31
2.6.4.32
2.6.4.33
2.6.4.34
2.6.4.35
2.6.4.36
2.6.4.37
2.6.4.38
2.6.4.39
2.6.4.40
2.6.4.41
2.6.4.42
2.6.4.43
2.6.4.44
2.6.4.45
2.6.4.46
2.6.4.47
2.6.4.48
2.6.4.49
2.6.4.50
2.6.4.51
2.6.4.52
2.6.4.53
2.6.4.54

FACT Hint

FIRST_ROWS Hint

FRESH_MV Hint

FULL Hint
GATHER_OPTIMIZER_STATISTICS Hint
GROUPING Hint

HASH Hint
IGNORE_ROW_ON_DUPKEY_INDEX Hint
INDEX Hint

INDEX_ASC Hint
INDEX_COMBINE Hint
INDEX_DESC Hint

INDEX_FFS Hint

INDEX_JOIN Hint

INDEX_SS Hint

INDEX_SS_ASC Hint
INDEX_SS_DESC Hint
INMEMORY Hint
INMEMORY_PRUNING Hint
LEADING Hint

MERGE Hint
MODEL_MIN_ANALYSIS Hint
MONITOR Hint
NATIVE_FULL_OUTER_JOIN Hint
NOAPPEND Hint

NOCACHE Hint
NO_CLUSTERING Hint
NO_EXPAND Hint

NO_FACT Hint
NO_GATHER_OPTIMIZER_STATISTICS Hint
NO_INDEX Hint

NO_INDEX_FFS Hint
NO_INDEX_SS Hint
NO_INMEMORY Hint
NO_INMEMORY_PRUNING Hint
NO_MERGE Hint

NO_MONITOR Hint
NO_NATIVE_FULL_OUTER_JOIN Hint
NO_PARALLEL Hint
NOPARALLEL Hint
NO_PARALLEL_INDEX Hint

2-100
2-100
2-101
2-101
2-102
2-102
2-102
2-103
2-104
2-104
2-105
2-105
2-106
2-106
2-106
2-107
2-107
2-108
2-108
2-108
2-109
2-109
2-110
2-110
2-110
2-111
2-111
2-111
2-112
2-112
2-112
2-113
2-113
2-114
2-114
2-114
2-115
2-115
2-115
2-116
2-116

Vi

ORACLE

2.6.4.55
2.6.4.56
2.6.4.57
2.6.4.58
2.6.4.59
2.6.4.60
2.6.4.61
2.6.4.62
2.6.4.63
2.6.4.64
2.6.4.65
2.6.4.66
2.6.4.67
2.6.4.68
2.6.4.69
2.6.4.70
26.4.71
2.6.4.72
2.6.4.73
2.6.4.74
2.6.4.75
2.6.4.76
2.6.4.77
2.6.4.78
2.6.4.79
2.6.4.80
2.6.4.81
2.6.4.82
2.6.4.83
2.6.4.84
2.6.4.85
2.6.4.86
2.6.4.87
2.6.4.88
2.6.4.89
2.6.4.90
2.6.4.91
2.6.4.92
2.6.4.93
2.6.4.94
2.6.4.95

NOPARALLEL_INDEX Hint

NO_PQ_CONCURRENT_UNION Hint

NO_PQ_SKEW Hint
NO_PUSH_PRED Hint
NO_PUSH_SUBQ Hint
NO_PX_JOIN_FILTER Hint

NO_QUERY_TRANSFORMATION Hint

NO_RESULT_CACHE Hint
NO_REWRITE Hint
NOREWRITE Hint

NO_STAR_TRANSFORMATION Hint

NO_STATEMENT_QUEUING Hint
NO_UNNEST Hint
NO_USE_BAND Hint
NO_USE_CUBE Hint
NO_USE_HASH Hint
NO_USE_MERGE Hint
NO_USE_NL Hint
NO_XML_QUERY_REWRITE Hint
NO_XMLINDEX_REWRITE Hint
NO_ZONEMAP Hint
OPT_PARAM Hint

ORDERED Hint

PARALLEL Hint
PARALLEL_INDEX Hint
PQ_CONCURRENT_UNION Hint
PQ_DISTRIBUTE Hint
PQ_FILTER Hint

PQ_SKEW Hint

PUSH_PRED Hint

PUSH_SUBQ Hint
PX_JOIN_FILTER Hint
QB_NAME Hint

RESULT_CACHE Hint
RETRY_ON_ROW_CHANGE Hint
REWRITE Hint
STAR_TRANSFORMATION Hint
STATEMENT_QUEUING Hint
UNNEST Hint

USE_BAND Hint

USE_CONCAT Hint

2-116
2-116
2-117
2-117
2-117
2-118
2-118
2-118
2-118
2-119
2-119
2-119
2-120
2-120
2-120
2-120
2-121
2-121
2-121
2-122
2-122
2-123
2-123
2-124
2-126
2-127
2-127
2-130
2-130
2-130
2-131
2-131
2-131
2-132
2-132
2-133
2-133
2-134
2-134
2-135
2-135

Vii

2.6.496 USE_CUBE Hint 2-136

2.6.4.97 USE_HASH Hint 2-136
2.6.4.98 USE_MERGE Hint 2-136
2.6.4.99 USE_NL Hint 2-137
2.6.4.100 USE_NL_WITH_INDEX Hint 2-137

2.7 Database Objects 2-138
2.7.1 Schema Objects 2-138
2.7.2 Nonschema Objects 2-139

2.8 Database Object Names and Qualifiers 2-139
2.8.1 Database Object Naming Rules 2-140
2.8.2 Schema Object Naming Examples 2-144
2.8.3 Schema Object Naming Guidelines 2-144

2.9 Syntax for Schema Objects and Parts in SQL Statements 2-145
2.9.1 How Oracle Database Resolves Schema Object References 2-146
2.9.2 References to Objects in Other Schemas 2-147
2.9.3 References to Objects in Remote Databases 2-147
2.9.3.1 Creating Database Links 2-147

2.9.3.2 References to Database Links 2-149

2.9.4 References to Partitioned Tables and Indexes 2-150
2.9.5 References to Object Type Attributes and Methods 2-152

3 Pseudocolumns

3.1 Hierarchical Query Pseudocolumns 3-1
3.1.1 CONNECT_BY_ISCYCLE Pseudocolumn 3-1
3.1.2 CONNECT_BY_ISLEAF Pseudocolumn 3-2
3.1.3 LEVEL Pseudocolumn 3-2

3.2 Sequence Pseudocolumns 3-3
3.2.1 Where to Use Sequence Values 3-4
3.2.2 How to Use Sequence Values 3-4

3.3 Version Query Pseudocolumns 3-6
3.4 COLUMN_VALUE Pseudocolumn 3-7
3.5 OBJECT_ID Pseudocolumn 3-8
3.6 OBJECT_VALUE Pseudocolumn 3-9
3.7 ORA_ROWSCN Pseudocolumn 3-9
3.8 ROWID Pseudocolumn 3-10
3.9 ROWNUM Pseudocolumn 3-11
3.10 XMLDATA Pseudocolumn 3-12

ORACLE viii

4 Operators

4.1 About SQL Operators 4-1
4.1.1 Unary and Binary Operators 4-1
4.1.2 Operator Precedence 4-2

4.2 Arithmetic Operators 4-2

4.3 COLLATE Operator 4-3

4.4 Concatenation Operator 4-4

4.5 Hierarchical Query Operators 4-5
45.1 PRIOR 4-5
4.5.2 CONNECT_BY_ROOT 4-6

4.6 Set Operators 4-6

4.7 Multiset Operators 4-6
4.7.1 MULTISET EXCEPT 4-7
4.7.2 MULTISET INTERSECT 4-8
4.7.3 MULTISET UNION 4-9

4.8 User-Defined Operators 4-10

5 Expressions

5.1 About SQL Expressions 5-1

5.2 Simple Expressions 5-3

5.3 Compound Expressions 5-4

5.4 Calculated Measure Expressions 5-5
5.4.1 Analytic View Measure Expressions 5-6
5.4.2 Analytic View Simple Expressions 5-15
5.4.3 Single Row Function Expression 5-16
5.4.4 Examples of Calculated Measure Expressions 5-16

5.5 CASE Expressions 5-18

5.6 Column Expressions 5-20

5.7 CURSOR Expressions 5-20

5.8 Datetime Expressions 5-22

5.9 Function Expressions 5-23

5.10 Interval Expressions 5-24

5.11 JSON Object Access Expressions 5-25

5.12 Model Expressions 5-28

5.13 Object Access Expressions 5-30

5.14 Placeholder Expressions 5-30

5.15 Scalar Subquery Expressions 5-31

5.16 Type Constructor Expressions 5-31

ORACLE

5.17 Expression Lists 5-33
Conditions
6.1 About SQL Conditions 6-1
6.1.1 Condition Precedence 6-3
6.2 Comparison Conditions 6-4
6.2.1 Simple Comparison Conditions 6-5
6.2.2 Group Comparison Conditions 6-7
6.3 Floating-Point Conditions 6-8
6.4 Logical Conditions 6-9
6.5 Model Conditions 6-10
6.5.1 IS ANY Condition 6-10
6.5.2 IS PRESENT Condition 6-11
6.6 Multiset Conditions 6-12
6.6.1 IS A SET Condition 6-13
6.6.2 IS EMPTY Condition 6-13
6.6.3 MEMBER Condition 6-14
6.6.4 SUBMULTISET Condition 6-14
6.7 Pattern-matching Conditions 6-15
6.7.1 LIKE Condition 6-16
6.7.2 REGEXP_LIKE Condition 6-19
6.8 Null Conditions 6-21
6.9 XML Conditions 6-22
6.9.1 EQUALS_PATH Condition 6-22
6.9.2 UNDER_PATH Condition 6-23
6.10 SQL/JSON Conditions 6-23
6.10.1 1S JSON Condition 6-24
6.10.2 JSON_EXISTS Condition 6-26
6.10.3 JSON_TEXTCONTAINS Condition 6-29
6.11 Compound Conditions 6-31
6.12 BETWEEN Condition 6-32
6.13 EXISTS Condition 6-33
6.14 IN Condition 6-33
6.15 IS OF type Condition 6-36
Functions
7.1 About SQL Functions 7-2
7.2 Single-Row Functions 7-4
7.2.1 Numeric Functions 7-4

ORACLE

7.
7.
7.
7.
7.
7.
7.
7.
7.
7.
7.
7.
7.
7.
7.
7.

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23
7.24
7.25
7.26
7.27

ORACLE

2.2 Character Functions Returning Character Values
2.3 Character Functions Returning Number Values
2.4 Character Set Functions
2.5 Collation Functions
2.6 Datetime Functions
2.7 General Comparison Functions
2.8 Conversion Functions
2.9 Large Object Functions
2.10 Collection Functions
2.11 Hierarchical Functions
2.12 Data Mining Functions
2.13 XML Functions
2.14 JSON Functions
2.15 Encoding and Decoding Functions
2.16 NULL-Related Functions
2.17 Environment and ldentifier Functions
Aggregate Functions
Analytic Functions
Object Reference Functions
Model Functions
OLAP Functions
Data Cartridge Functions
ABS
ACOS
ADD_MONTHS
APPENDCHILDXML
APPROX_COUNT_DISTINCT
APPROX_COUNT_DISTINCT_AGG
APPROX_COUNT_DISTINCT_DETAIL
APPROX_MEDIAN
APPROX_PERCENTILE
APPROX_PERCENTILE_AGG
APPROX_PERCENTILE_DETAIL
ASCII
ASCIISTR
ASIN
ATAN
ATAN2
AVG
BFILENAME
BIN_TO_NUM

7-5
7-6
7-6
7-6
7-7

7-8
7-8
7-8
7-9
7-9

7-10

7-11

7-11

7-11

7-12

7-14

7-21

7-21

7-21

7-21

7-22

7-22

7-23

7-24

7-25

7-26

7-27

7-29

7-32

7-36

7-36

7-41

7-42

7-42

7-43

7-44

7-44

7-46

7-47

Xi

7.28
7.29
7.30
7.31
7.32
7.33
7.34
7.35
7.36
7.37
7.38
7.39
7.40
7.41
7.42
7.43
7.44
7.45
7.46
7.47
7.48
7.49
7.50

BITAND
CARDINALITY

CAST

CEIL
CHARTOROWID
CHR
CLUSTER_DETAILS
CLUSTER_DISTANCE
CLUSTER_ID
CLUSTER_PROBABILITY
CLUSTER_SET
COALESCE
COLLATION
COLLECT
COMPOSE
CON_DBID_TO_ID
CON_GUID_TO_ID
CON_NAME_TO_ID
CON_UID_TO_ID
CONCAT

CONVERT

CORR

CORR_*

7.50.1 CORR_S
7.50.2 CORR_K

7.51
7.52
7.53
7.54
7.55
7.56
7.57
7.58
7.59
7.60
7.61
7.62
7.63
7.64
7.65
7.66

ORACLE

cos

COSH

COUNT

COVAR_POP
COVAR_SAMP
CUBE_TABLE
CUME_DIST
CURRENT_DATE
CURRENT_TIMESTAMP
cv

DATAOBJ_TO_MAT_PARTITION

DATAOBJ_TO_PARTITION
DBTIMEZONE

DECODE

DECOMPOSE
DELETEXML

7-48
7-50
7-50
7-55
7-56
7-56
7-58
7-62
7-64
7-67
7-69
7-72
7-74
7-75
7-76
7-77
7-78
7-78
7-79
7-80
7-81
7-83
7-84
7-86
7-86
7-87
7-87
7-88
7-90
7-92
7-93
7-95
7-97
7-97
7-98
7-100
7-100
7-101
7-102
7-103
7-105

Xii

7.67
7.68
7.69
7.70
7.71
7.72
7.73
7.74
7.75
7.76
7.77
7.78
7.79
7.80
7.81
7.82
7.83
7.84
7.85
7.86
7.87
7.88
7.89
7.90
7.91
7.92
7.93
7.94
7.95
7.96
7.97
7.98
7.99
7.100
7.101
7.102
7.103
7.104
7.105
7.106
7.107

ORACLE

DENSE_RANK
DEPTH
DEREF

DUMP

EMPTY_BLOB, EMPTY_CLOB

EXISTSNODE
EXP
EXTRACT (datetime)
EXTRACT (XML)
EXTRACTVALUE
FEATURE_COMPARE
FEATURE_DETAILS
FEATURE_ID
FEATURE_SET
FEATURE_VALUE
FIRST
FIRST_VALUE
FLOOR
FROM_TZ
GREATEST
GROUP_ID
GROUPING
GROUPING_ID
HEXTORAW
INITCAP
INSERTCHILDXML
INSERTCHILDXMLAFTER
INSERTCHILDXMLBEFORE
INSERTXMLAFTER
INSERTXMLBEFORE
INSTR
ITERATION_NUMBER
JSON_ARRAY
JSON_ARRAYAGG
JSON_DATAGUIDE
JSON_OBJECT
JSON_OBJECTAGG
JSON_QUERY
JSON_TABLE
JSON_VALUE
LAG

7-106
7-108
7-108
7-109
7-111
7-112
7-113
7-114
7-116
7-117
7-119
7-121
7-124
7-126
7-129
7-132
7-134
7-136
7-137
7-138
7-139
7-140
7-141
7-142
7-143
7-143
7-145
7-146
7-147
7-148
7-150
7-151
7-153
7-154
7-156
7-157
7-159
7-161
7-167
7-175
7-181

Xiii

7.108
7.109
7.110
7.111
7.112
7.113
7.114
7.115
7.116
7.117
7.118
7.119
7.120
7.121
7.122
7.123
7.124
7.125
7.126
7.127
7.128
7.129
7.130
7.131
7.132
7.133
7.134
7.135
7.136
7.137
7.138
7.139
7.140
7.141
7.142
7.143
7.144
7.145
7.146
7.147
7.148

ORACLE

LAST
LAST_DAY

LAST VALUE

LEAD

LEAST

LENGTH

LISTAGG

LN

LNNVL
LOCALTIMESTAMP
LOG

LOWER

LPAD

LTRIM

MAKE_REF

MAX

MEDIAN

MIN

MOD
MONTHS_BETWEEN
NANVL

NCHR

NEW_TIME

NEXT DAY
NLS_CHARSET DECL_LEN
NLS_CHARSET_ID
NLS_CHARSET NAME
NLS_COLLATION_ID
NLS_COLLATION_NAME
NLS_INITCAP
NLS_LOWER
NLS_UPPER
NLSSORT
NTH_VALUE

NTILE

NULLIF
NUMTODSINTERVAL
NUMTOYMINTERVAL
NVL

NVL2
ORA_DM_PARTITION_NAME

7-182
7-183
7-184
7-187
7-188
7-189
7-190
7-194
7-195
7-196
7-197
7-197
7-198
7-199
7-200
7-201
7-202
7-205
7-206
7-207
7-208
7-209
7-209
7-210
7-211
7-211
7-212
7-213
7-213
7-215
7-216
7-217
7-218
7-221
7-222
7-223
7-224
7-225
7-226
7-227
7-228

Xiv

7.149
7.150
7.151
7.152
7.153
7.154
7.155
7.156
7.157
7.158
7.159
7.160
7.161
7.162
7.163
7.164
7.165
7.166
7.167
7.168
7.169
7.170
7.171
7.172
7.173
7.174
7.175
7.176
7.177
7.178
7.179
7.180
7.181
7.182
7.183
7.184
7.185
7.186
7.187
7.188
7.189

ORACLE

ORA_DST_AFFECTED
ORA_DST_CONVERT
ORA_DST_ERROR
ORA_HASH
ORA_INVOKING_USER
ORA_INVOKING_USERID
PATH
PERCENT_RANK
PERCENTILE_CONT
PERCENTILE_DISC
POWER
POWERMULTISET
POWERMULTISET_BY_CARDINALITY
PREDICTION
PREDICTION_BOUNDS
PREDICTION_COST
PREDICTION_DETAILS
PREDICTION_PROBABILITY
PREDICTION_SET
PRESENTNNV
PRESENTV

PREVIOUS

RANK
RATIO_TO_REPORT
RAWTOHEX
RAWTONHEX

REF

REFTOHEX
REGEXP_COUNT
REGEXP_INSTR
REGEXP_REPLACE
REGEXP_SUBSTR
REGR_ (Linear Regression) Functions
REMAINDER

REPLACE

ROUND (date)

ROUND (number)
ROW_NUMBER
ROWIDTOCHAR
ROWIDTONCHAR
RPAD

7-230
7-230
7-231
7-232
7-233
7-233
7-234
7-235
7-237
7-239
7-241
7-242
7-243
7-244
7-248
7-250
7-253
7-258
7-261
7-264
7-266
7-267
7-268
7-270
7-271
7-272
7-272
7-273
7-274
7-279
7-282
7-285
7-289
7-293
7-294
7-295
7-296
7-297
7-299
7-300
7-300

XV

7.190
7.191
7.192
7.193
7.194
7.195
7.196
7.197
7.198
7.199
7.200
7.201
7.202
7.203
7.204
7.205
7.206
7.207

RTRIM
SCN_TO_TIMESTAMP
SESSIONTIMEZONE

SET

SIGN

SIN

SINH

SOUNDEX

SQRT

STANDARD_HASH
STATS_BINOMIAL_TEST
STATS_CROSSTAB
STATS_F_TEST
STATS_KS_TEST
STATS_MODE
STATS_MW_TEST
STATS_ONE_WAY_ANOVA
STATS_T_TEST *

7.207.1 STATS_T_TEST_ONE
7.207.2 STATS_T_TEST_PAIRED
7.207.3 STATS_T_TEST INDEP and STATS_T_TEST_INDEPU

7.208
7.209
7.210
7.211
7.212
7.213
7.214
7.215
7.216
7.217
7.218
7.219
7.220
7.221
7.222
7.223
7.224
7.225
7.226
7.227

ORACLE

STATS_WSR_TEST
STDDEV

STDDEV_POP
STDDEV_SAMP

SUBSTR

SUM
SYS_CONNECT_BY_PATH
SYS_CONTEXT
SYS_DBURIGEN
SYS_EXTRACT_UTC
SYS_GUID
SYS_OP_ZONE_ID
SYS_TYPEID
SYS_XMLAGG
SYS_XMLGEN

SYSDATE
SYSTIMESTAMP

TAN

TANH
TIMESTAMP_TO_SCN

7-301
7-302
7-304
7-304
7-305
7-306
7-306
7-307
7-308
7-309
7-310
7-311
7-312
7-314
7-315
7-316
7-318
7-319
7-321
7-321
7-321
7-323
7-323
7-325
7-326
7-328
7-329
7-331
7-332
7-339
7-340
7-341
7-341
7-343
7-344
7-345
7-346
7-347
7-347
7-348
7-349

XVi

7.228 TO_APPROX_COUNT_DISTINCT 7-350

7.229 TO_APPROX_PERCENTILE 7-350
7.230 TO_BINARY_DOUBLE 7-352
7.231 TO_BINARY_FLOAT 7-354
7.232 TO_BLOB (bfile) 7-355
7.233 TO_BLOB (raw) 7-356
7.234 TO_CHAR (bfile|blob) 7-356
7.235 TO_CHAR (character) 7-357
7.236 TO_CHAR (datetime) 7-358
7.237 TO_CHAR (number) 7-362
7.238 TO_CLOB (bfile|blob) 7-364
7.239 TO_CLOB (character) 7-365
7.240 TO_DATE 7-365
7.241 TO_DSINTERVAL 7-367
7.242 TO_LOB 7-369
7.243 TO_MULTI_BYTE 7-370
7.244 TO_NCHAR (character) 7-371
7.245 TO_NCHAR (datetime) 7-372
7.246 TO_NCHAR (number) 7-373
7.247 TO_NCLOB 7-373
7.248 TO_NUMBER 7-374
7.249 TO_SINGLE_BYTE 7-375
7.250 TO_TIMESTAMP 7-376
7.251 TO_TIMESTAMP_TZ 7-377
7.252 TO_YMINTERVAL 7-379
7.253 TRANSLATE 7-380
7.254 TRANSLATE ... USING 7-382
7.255 TREAT 7-383
7.256 TRIM 7-384
7.257 TRUNC (date) 7-385
7.258 TRUNC (number) 7-387
7.259 TZ_OFFSET 7-388
7.260 UID 7-389
7.261 UNISTR 7-389
7.262 UPDATEXML 7-390
7.263 UPPER 7-391
7.264 USER 7-392
7.265 USERENV 7-393
7.266 VALIDATE_CONVERSION 7-395
7.267 VALUE 7-397
7.268 VAR_POP 7-398

ORACLE XVii

7.269 VAR_SAMP 7-399
7.270 VARIANCE 7-400
7.271 VSIZE 7-402
7.272 WIDTH_BUCKET 7-402
7.273 XMLAGG 7-404
7.274 XMLCAST 7-405
7.275 XMLCDATA 7-406
7.276 XMLCOLATTVAL 7-407
7.277 XMLCOMMENT 7-408
7.278 XMLCONCAT 7-408
7.279 XMLDIFF 7-409
7.280 XMLELEMENT 7-411
7.281 XMLEXISTS 7-414
7.282 XMLFOREST 7-414
7.283 XMLISVALID 7-415
7.284 XMLPARSE 7-416
7.285 XMLPATCH 7-417
7.286 XMLPI 7-418
7.287 XMLQUERY 7-419
7.288 XMLROOT 7-420
7.289 XMLSEQUENCE 7-421
7.290 XMLSERIALIZE 7-423
7.291 XMLTABLE 7-424
7.292 XMLTRANSFORM 7-427
7.293 ROUND and TRUNC Date Functions 7-428
7.294 About User-Defined Functions 7-430
7.294.1 Prerequisites 7-431
7.294.2 Name Precedence 7-431
7.294.2.1 Naming Conventions 7-432

8 Common SQL DDL Clauses
8.1 allocate_extent_clause 8-1
8.2 constraint 8-3
8.3 deallocate_unused_clause 8-31
8.4 file_specification 8-33
8.5 logging_clause 8-42
8.6 parallel_clause 8-45
8.7 physical_attributes_clause 8-48
8.8 size_clause 8-51
ORACLE Xviii

8.9 storage_clause 8-52

O SQL Queries and Subqueries

9.1 About Queries and Subqueries 9-1
9.2 Creating Simple Queries 9-2
9.3 Hierarchical Queries 9-2
9.3.1 Hierarchical Query Examples 9-5
9.4 The UNION [ALL], INTERSECT, MINUS Operators 9-8
9.5 Sorting Query Results 9-11
9.6 Joins 9-12
9.6.1 Join Conditions 9-12
9.6.2 Equijoins 9-12
9.6.3 Band Joins 9-13
9.6.4 Self Joins 9-13
9.6.5 Cartesian Products 9-13
9.6.6 Inner Joins 9-13
9.6.7 Outer Joins 9-13
9.6.8 Antijoins 9-15
9.6.9 Semijoins 9-15
9.7 Using Subqueries 9-16
9.8 Unnesting of Nested Subqueries 9-17
9.9 Selecting from the DUAL Table 9-18
9.10 Distributed Queries 9-18

10 SQL Statements: ADMINISTER KEY MANAGEMENT to ALTER

JAVA
10.1 Types of SQL Statements 10-1
10.1.1 Data Definition Language (DDL) Statements 10-2
10.1.2 Data Manipulation Language (DML) Statements 10-3
10.1.3 Transaction Control Statements 10-3
10.1.4 Session Control Statements 10-4
10.1.5 System Control Statement 10-4
10.1.6 Embedded SQL Statements 10-4
10.2 How the SQL Statement Chapters are Organized 10-4
10.3 ADMINISTER KEY MANAGEMENT 10-5
10.4 ALTER ANALYTIC VIEW 10-30
10.5 ALTER ATTRIBUTE DIMENSION 10-30
10.6 ALTER AUDIT POLICY (Unified Auditing) 10-31
10.7 ALTER CLUSTER 10-36

ORACLE XixX

10.8 ALTER DATABASE 10-40
10.9 ALTER DATABASE LINK 10-91
10.10 ALTER DIMENSION 10-92
10.11 ALTER DISKGROUP 10-96
10.12 ALTER FLASHBACK ARCHIVE 10-130
10.13 ALTER FUNCTION 10-133
10.14 ALTER HIERARCHY 10-134
10.15 ALTER INDEX 10-135
10.16 ALTER INDEXTYPE 10-159
10.17 ALTER INMEMORY JOIN GROUP 10-161
10.18 ALTER JAVA 10-163
11 SQL Statements: ALTER LIBRARY to ALTER SESSION

11.1 ALTER LIBRARY 11-1
11.2 ALTER LOCKDOWN PROFILE 11-2
11.3 ALTER MATERIALIZED VIEW 11-14
11.4 ALTER MATERIALIZED VIEW LOG 11-34
11.5 ALTER MATERIALIZED ZONEMAP 11-43
11.6 ALTER OPERATOR 11-47
11.7 ALTER OUTLINE 11-50
11.8 ALTER PACKAGE 11-51
11.9 ALTER PLUGGABLE DATABASE 11-53
11.10 ALTER PROCEDURE 11-72
11.11 ALTER PROFILE 11-73
11.12 ALTER RESOURCE COST 11-77
11.13 ALTER ROLE 11-79
11.14 ALTER ROLLBACK SEGMENT 11-81
11.15 ALTER SEQUENCE 11-84
11.16 ALTER SESSION 11-86

11.16.1 Initialization Parameters and ALTER SESSION 11-95

11.16.2 Session Parameters and ALTER SESSION 11-95

12 SQL Statements: ALTER SYNONYM to COMMENT

12.1 ALTER SYNONYM 12-1
12.2 ALTER SYSTEM 12-3
12.3 ALTER TABLE 12-29
12.4 ALTER TABLESPACE 12-173
125 ALTER TABLESPACE SET 12-191
12.6 ALTER TRIGGER 12-193

ORACLE

XX

12.7 ALTERTYPE 12-195
12.8 ALTER USER 12-197
129 ALTER VIEW 12-208
12.10 ANALYZE 12-211
12.11 ASSOCIATE STATISTICS 12-220
12.12 AUDIT (Traditional Auditing) 12-224
12.13 AUDIT (Unified Auditing) 12-240
12.14 CALL 12-245
12.15 COMMENT 12-250
13 SQL Statements: COMMIT to CREATE JAVA
13.1 COMMIT 13-1
13.2 CREATE ANALYTIC VIEW 13-6
13.3 CREATE ATTRIBUTE DIMENSION 13-13
13.4 CREATE AUDIT POLICY (Unified Auditing) 13-23
13.5 CREATE CLUSTER 13-32
13.6 CREATE CONTEXT 13-41
13.7 CREATE CONTROLFILE 13-44
13.8 CREATE DATABASE 13-51
13.9 CREATE DATABASE LINK 13-69
13.10 CREATE DIMENSION 13-74
13.11 CREATE DIRECTORY 13-80
13.12 CREATE DISKGROUP 13-83
13.13 CREATE EDITION 13-92
13.14 CREATE FLASHBACK ARCHIVE 13-95
13.15 CREATE FUNCTION 13-98
13.16 CREATE HIERARCHY 13-100
13.17 CREATE INDEX 13-104
13.18 CREATE INDEXTYPE 13-141
13.19 CREATE INMEMORY JOIN GROUP 13-145
13.20 CREATE JAVA 13-146
14 SQL Statements: CREATE LIBRARY to CREATE SCHEMA
14.1 CREATE LIBRARY 14-1
14.2 CREATE LOCKDOWN PROFILE 14-3
14.3 CREATE MATERIALIZED VIEW 14-4
14.4 CREATE MATERIALIZED VIEW LOG 14-38
145 CREATE MATERIALIZED ZONEMAP 14-49
146 CREATE OPERATOR 14-58

ORACLE

XXi

14.7 CREATE OUTLINE 14-62
14.8 CREATE PACKAGE 14-65
14.9 CREATE PACKAGE BODY 14-67
14.10 CREATE PFILE 14-69
14.11 CREATE PLUGGABLE DATABASE 14-71
14.12 CREATE PROCEDURE 14-93
14.13 CREATE PROFILE 14-95
14.14 CREATE RESTORE POINT 14-102
14.15 CREATE ROLE 14-106
14.16 CREATE ROLLBACK SEGMENT 14-110
14.17 CREATE SCHEMA 14-113
15 SQL Statements: CREATE SEQUENCE to DROP CLUSTER
15.1 CREATE SEQUENCE 15-1
15.2 CREATE SPFILE 15-7
15.3 CREATE SYNONYM 15-11
15.4 CREATE TABLE 15-16
15.5 CREATE TABLESPACE 15-141
15.6 CREATE TABLESPACE SET 15-162
15.7 CREATE TRIGGER 15-164
15.8 CREATE TYPE 15-166
15.9 CREATE TYPE BODY 15-168
15.10 CREATE USER 15-169
15.11 CREATE VIEW 15-179
15.12 DELETE 15-195
15.13 DISASSOCIATE STATISTICS 15-206
15.14 DROP ANALYTIC VIEW 15-208
15.15 DROP ATTRIBUTE DIMENSION 15-209
15.16 DROP AUDIT POLICY (Unified Auditing) 15-209
15.17 DROP CLUSTER 15-211
16 SQL Statements: DROP CONTEXT to DROP JAVA
16.1 DROP CONTEXT 16-1
16.2 DROP DATABASE 16-2
16.3 DROP DATABASE LINK 16-3
16.4 DROP DIMENSION 16-4
16.5 DROP DIRECTORY 16-5
16.6 DROP DISKGROUP 16-6
16.7 DROP EDITION 16-8

ORACLE

XXii

16.8 DROP FLASHBACK ARCHIVE 16-9
16.9 DROP FUNCTION 16-10
16.10 DROP HIERARCHY 16-11
16.11 DROP INDEX 16-12
16.12 DROP INDEXTYPE 16-14
16.13 DROP INMEMORY JOIN GROUP 16-15
16.14 DROP JAVA 16-16

17 SQL Statements: DROP LIBRARY to DROP SYNONYM
17.1 DROP LIBRARY 17-1
17.2 DROP LOCKDOWN PROFILE 17-2
17.3 DROP MATERIALIZED VIEW 17-3
17.4 DROP MATERIALIZED VIEW LOG 17-5
17.5 DROP MATERIALIZED ZONEMAP 17-7
17.6 DROP OPERATOR 17-8
17.7 DROP OUTLINE 17-9
17.8 DROP PACKAGE 17-10
17.9 DROP PLUGGABLE DATABASE 17-12
17.10 DROP PROCEDURE 17-13
17.11 DROP PROFILE 17-14
17.12 DROP RESTORE POINT 17-15
17.13 DROP ROLE 17-17
17.14 DROP ROLLBACK SEGMENT 17-18
17.15 DROP SEQUENCE 17-19
17.16 DROP SYNONYM 17-20

18 SQL Statements: DROP TABLE to LOCK TABLE
18.1 DROP TABLE 18-1
18.2 DROP TABLESPACE 18-5
18.3 DROP TABLESPACE SET 18-8
18.4 DROP TRIGGER 18-9
18.5 DROP TYPE 18-10
18.6 DROP TYPE BODY 18-12
18.7 DROP USER 18-13
18.8 DROP VIEW 18-15
18.9 EXPLAIN PLAN 18-17
18.10 FLASHBACK DATABASE 18-20
18.11 FLASHBACK TABLE 18-24
18.12 GRANT 18-30

ORACLE

XXiii

18.13 INSERT 18-60
18.14 LOCK TABLE 18-83
19 SQL Statements: MERGE to UPDATE
19.1 MERGE 19-1
19.2 NOAUDIT (Traditional Auditing) 19-6
19.3 NOAUDIT (Unified Auditing) 19-11
19.4 PURGE 19-15
19.5 RENAME 19-18
19.6 REVOKE 19-20
19.7 ROLLBACK 19-32
19.8 SAVEPOINT 19-34
19.9 SELECT 19-35
19.10 SET CONSTRAINT[S] 19-121
19.11 SET ROLE 19-123
19.12 SET TRANSACTION 19-125
19.13 TRUNCATE CLUSTER 19-128
19.14 TRUNCATE TABLE 19-130
19.15 UPDATE 19-134
A How to Read Syntax Diagrams
A.1 Graphic Syntax Diagrams A-1
A.1.1 Required Keywords and Parameters A-3
A.1.2 Optional Keywords and Parameters A-3
A.1.3 Syntax Loops A-4
A.1.4 Multipart Diagrams A-4
A.2 Backus-Naur Form Syntax A-5
B Automatic and Manual Locking Mechanisms During SQL
Operations
B.1 Automatic Locks in DML Operations B-1
B.2 Automatic Locks in DDL Operations B-4
B.2.1 Exclusive DDL Locks B-5
B.2.2 Share DDL Locks B-5
B.2.3 Breakable Parse Locks B-5
B.3 Manual Data Locking B-5

ORACLE

XXIV

C Oracle and Standard SQL

C.1 ANSI Standards C-1
C.2 1SO Standards C-2
C.3 Oracle Compliance to Core SQL C-3
C.4 Oracle Support for Optional Features of SQL/Foundation C-9
C.5 Oracle Compliance with SQL/CLI C-26
C.6 Oracle Compliance with SQL/PSM C-26
C.7 Oracle Compliance with SQL/MED Cc-27
C.8 Oracle Compliance with SQL/OLB Cc-27
C.9 Oracle Compliance with SQL/JRT Cc-27
C.10 Oracle Compliance with SQL/XML Cc-27
C.11 Oracle Compliance with FIPS 127-2 C-32
C.12 Oracle Extensions to Standard SQL C-34
C.13 Oracle Compliance with Older Standards C-34
C.14 Character Set Support C-34
D Oracle Regular Expression Support
D.1 Multilingual Regular Expression Syntax D-1
D.2 Regular Expression Operator Multilingual Enhancements D-2
D.3 Perl-influenced Extensions in Oracle Regular Expressions D-3
E Oracle SQL Reserved Words and Keywords
E.1 Oracle SQL Reserved Words E-1
E.2 Oracle SQL Keywords E-4
F Extended Examples
F.1 Using Extensible Indexing F-1
F.2 Using XML in SQL Statements F-8
Index
ORACLE

XXV

Preface

Preface

This reference contains a complete description of the Structured Query Language
(SQL) used to manage information in an Oracle Database. Oracle SQL is a superset
of the American National Standards Institute (ANSI) and the International Organization
for Standardization (ISO) SQL standard.

This Preface contains these topics:

* Audience (page xxvi)

* Documentation Accessibility (page xxvi)
* Related Documents (page xxvi)

e Conventions (page xxvii)

Audience

The Oracle Database SQL Language Reference is intended for all users of Oracle
SQL.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

For more information, see these Oracle resources:

e Oracle Database PL/SQL Language Reference for information on PL/SQL, the
procedural language extension to Oracle SQL

e Pro*C/C++ Programmer's Guide and Pro*COBOL Programmer's Guide for
detailed descriptions of Oracle embedded SQL

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option with an Oracle Database

ORACLE XXVi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

installation. Refer to Oracle Database Sample Schemas for information on how these
schemas were created and how you can use them yourself.

Conventions

The following text conventions are used in this document:

ORACLE

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

XXVii

Changes in This Release for Oracle Database SQL Language Reference

Changes in This Release for Oracle
Database SQL Language Reference

This preface contains:

e Changes in Oracle Database 12c¢ Release 2 (12.2.0.1) (page xxviii)
e Changes in Oracle Database 12c Release 1 (12.1.0.2) (page xI)
e Changes in Oracle Database 12c Release 1 (12.1.0.1) (page xlii)

Changes in Oracle Database 12c Release 2 (12.2.0.1)

The following are changes in Oracle Database SQL Language Reference for Oracle
Database 12c¢ Release 2 (12.2.0.1).

New Features

The following features are new in this release:

Long Identifiers

The maximum length for most database object names has increased from 30 bytes to
128 bytes.

See Database Object Naming Rules (page 2-140).

Data-Bound Collation and Case-Insensitive Databases

Data-bound collation allows you to declare character comparison rules at the column
level. The collation declared for a column is automatically applied to all collation-
sensitive SQL operations that reference the column. This enables applications to
consistently apply language-specific comparison rules to the exact data that requires
these rules. Data-bound collation also allows you to declare a case-insensitive
collation for a table or a schema, so that all columns in a table or schema can be
compared in a case-insensitive manner. This enables you to create a case-insensitive
database.

See Data-Bound Collation (page 2-46).

Features that Introduce New SQL Statements
The following features introduce new SQL statements:

e Analytic views are metadata objects that provide a fast and efficient way to
create and store analytic queries of data in existing database tables and views.
With analytic views you can easily create complex analytic queries on large
amounts of hierarchical and dimensional data. Attribute dimensions, hierarchies,
and analytic views are new database schema objects.

ORACLE XXViii

ORACLE

Changes in This Release for Oracle Database SQL Language Reference

See the following new statements:

CREATE ANALYTIC VIEW (page 13-6)
CREATE ATTRIBUTE DIMENSION (page 13-13)
— CREATE HIERARCHY (page 13-100)

— ALTER ANALYTIC VIEW (page 10-30)

— ALTER ATTRIBUTE DIMENSION (page 10-30)
— ALTER HIERARCHY (page 10-134)

— DROP ANALYTIC VIEW (page 15-208)

— DROP ATTRIBUTE DIMENSION (page 15-209)
— DROP HIERARCHY (page 16-11)

Join groups allow you to optimize join queries for table columns that are
populated in the In-Memory Column Store.

See the following new statements:

— CREATE INMEMORY JOIN GROUP (page 13-145)
— ALTER INMEMORY JOIN GROUP (page 10-161)
— DROP INMEMORY JOIN GROUP (page 16-15)

Oracle Sharding supports distribution and replication of data across a pool of
discrete Oracle databases that share no hardware or software.

See the following new statements:

— CREATE TABLESPACE SET (page 15-162)
— ALTER TABLESPACE SET (page 12-191)
— DROP TABLESPACE SET (page 18-8)

See the new clauses SHARDED (page 15-50) and DUPLICATED (page 15-51) of
CREATE TABLE.

You can use PDB lockdown profiles in a multitenant container database (CDB)
to restrict user operations in PDBs.

See the following new statements:

— CREATE LOCKDOWN PROFILE (page 14-3)
— ALTER LOCKDOWN PROFILE (page 11-2)
— DROP LOCKDOWN PROFILE (page 17-2)

ADMINISTER KEY MANAGEMENT Enhancements

You can instruct the database to force a keystore open for certain operations.
See Notes on the FORCE KEYSTORE Clause (page 10-23).
You can use keystore passwords stored in an external store.

See the new clause EXTERNAL STORE in Notes on Specifying Keystore Passwords
(page 10-24).

You can specify an encryption algorithm for a master key.

XXiX

ORACLE

Changes in This Release for Oracle Database SQL Language Reference

See the new clause USING ALGORITHM of set_key (page 10-16) and create_key
(page 10-17).

ALTER SESSION Enhancement

e When you switch to a different container in a CDB, you can specify the service you
would like to use in the new container.

See the new clause SERVICE (page 11-93).

AUDIT and NOAUDIT (Unified Auditing) Enhancements

* You can enable or disable unified audit policies for users who have been directly
granted specific roles.

See the new clauses by _users_with_roles (page 12-243) of AUDIT and NOAUDIT.

CREATE DATABASE and ALTER DATABASE Enhancements

* You can specify a local temporary tablespace for your database.

See the clause default_temp_tablespace (page 13-63) of CREATE DATABASE and the
DEFAULT [LOCAL] TEMPORARY TABLESPACE Clause (page 10-83) of ALTER
DATABASE.

* You can specify local undo mode or shared undo mode for a CDB.

See the new undo_mode_clause (page 13-67) of CREATE DATABASE and
undo_mode_clause (page 10-87) of ALTER DATABASE.

* For Oracle Real Application Clusters (Oracle RAC) or Oracle RAC One Node
databases, you can control the number of instances on a physical standby that
Redo Apply uses.

See the new clause USING INSTANCES (page 10-61) of ALTER DATABASE.

* You can perform offline encryption or decryption of a data file using Transparent
Data Encryption (TDE).

See the new clauses ENCRYPT | DECRYPT (page 10-66) of ALTER DATABASE.

CREATE DIRECTORY Enhancement

* You can create directories that are application common objects. Application
common objects can be shared by application PDBs in an application container.

See the new clause SHARING (page 13-81) of CREATE DIRECTORY.

CREATE DISKGROUP and ALTER DISKGROUP Enhancements

* You can create Oracle ASM flex disk groups, which support quota groups and file
groups. Flex disk groups enable you to define a quota limit for the files of a group
of databases within a disk group.

See:

— The new FLEX keyword in the REDUNDANCY Clause (page 13-85) of CREATE
DISKGROUP.

— The new quotagroup_clauses (page 10-123) of ALTER DISKGROUP.
— The new filegroup_clauses (page 10-125) of ALTER DISKGROUP.

XXX

ORACLE

Changes in This Release for Oracle Database SQL Language Reference

You can pause, restart, and change the power of active disk group rebalance
operations. You can also specify which phases of a rebalance operation to
perform.

See the rebalance_diskgroup_clause (page 10-111) of ALTER DISKGROUP.

The following new Oracle ASM disk group attributes are listed in Table 13-2
(page 13-88):

— LOGICAL_SECTOR_SIZE allows you to set the logical sector size of a disk group.

— PREFERRED_READ.ENABLED allows you to specify whether preferred read
functionality is enabled for a disk group in an Oracle extended cluster.

CREATE INDEX, ALTER INDEX, and DROP INDEX Enhancements

You can specify whether to invalidate dependent cursors while creating an index,
rebuilding an index, marking an index UNUSABLE, or dropping an index.

See the new clause { DEFERRED | IMMEDIATE } INVALIDATION of CREATEINDEX
(page 13-134), ALTERINDEX (page 12-149), and DROPINDEX (page 16-13).

Advanced index compression provides a HIGH compression level.

See the new HIGH keyword of the clause advanced_index_compression
(page 13-123) of CREATE INDEX.

CREATE JAVA Enhancement

You can create Java schema objects that are application common objects.
Application common objects can be shared by application PDBs in an application
container.

See the new clause SHARING (page 13-149) of CREATE JAVA.

CREATE MATERIALIZED VIEW and ALTER MATERIALIZED VIEW Enhancements

A real-time materialized view provides fresh data to user queries even when the
materialized view is not in sync with its base tables due to data changes.

See the new clause { ENABLE | DISABLE } ON QUERY COMPUTATION of
CREATEMATERIALIZEDVIEW (page 14-30) and ALTERMATERIALIZEDVIEW (page 11-30).

The ON STATEMENT refresh mode causes an automatic refresh to occur every time a
DML operation is performed on any of a materialized view's base tables.

See the new ON STATEMENT Clause (page 14-26) of CREATE MATERIALIZED VIEW.

CREATE PLUGGABLE DATABASE and ALTER PLUGGABLE DATABASE
Enhancements

An application container is a component of a CDB that stores data for one or
more applications. It consists of an application root, an optional application seed,
and application PDBs.

See the new clauses AS APPLICATION CONTAINER (page 14-78) and AS SEED
(page 14-78) of CREATE PLUGGABLE DATABASE.

You can perform the following operations in an application container:
— Install, patch, upgrade, and uninstall applications

— Register application versions and patch numbers

XXXi

Changes in This Release for Oracle Database SQL Language Reference

— Keep applications in sync between the application root and application PDBs
See the new application_clauses (page 11-67) of ALTER PLUGGABLE DATABASE.

* You can create a refreshable PDB when cloning a PDB. Changes in the source
PDB can be propagated to the refreshable PDB, either manually or automatically.

See the new pdb_refresh_mode_clause (page 14-87) of CREATE PLUGGABLE DATABASE
and the new clauses REFRESH (page 11-63) and pdb_refresh_mode_clause
(page 11-62) of ALTER PLUGGABLE DATABASE.

e A proxy PDB references a PDB in a different CDB and provides fully functional
access to the referenced PDB.

See the new clauses AS PROXY FROM (page 14-85) and HOST and PORT
(page 14-89) of CREATE PLUGGABLE DATABASE.

* You can relocate a PDB from one CDB to another.
See the new clause RELOCATE (page 14-88) of CREATE PLUGGABLE DATABASE.

e When cloning a PDB, you can instruct the database to clone a tablespace using
storage snapshots or clone the data model definition of a tablespace, but not the
tablespace's data.

See the new clauses { SNAPSHOT COPY | NO DATA } (page 14-82) of CREATE
PLUGGABLE DATABASE.

* When plugging in a PDB, you can instruct the database to copy or move
tablespace files to a new location.

See the new clauses { COPY | MOVE | NOCOPY } (page 14-82) of CREATE PLUGGABLE
DATABASE.

* In earlier releases, you could specify a permanent default tablespace only when
creating a PDB from seed. You can now also specify a permanent default
tablespace when cloning a PDB or plugging in a PDB.

See the clause default_tablespace (page 14-79) of CREATE PLUGGABLE DATABASE.

* You can use parallel execution servers to copy a new PDB's data files to a new
location. This may result in faster creation of the PDB.

See the new parallel_pdb_creation_clause (page 14-79) of CREATE PLUGGABLE
DATABASE.

CREATE PROFILE and ALTER PROFILE Enhancements

e In profiles, you can specify the permitted number of consecutive days of no logins
after which an account will be locked.

See the new INACTIVE_ACCOUNT_TIME (page 14-100) setting of CREATE PROFILE
and ALTER PROFILE.

CREATE RESTORE POINT Enhancement

e You can create restore points for a PDB.

See the new clauses CLEAN (page 14-104) and FOR PLUGGABLE DATABASE
(page 14-105) of CREATE RESTORE POINT.

ORACLE XXXii

ORACLE

Changes in This Release for Oracle Database SQL Language Reference

CREATE SEQUENCE Enhancement

* You can create sequences that are application common objects. Application
common objects can be shared by application PDBs in an application container.

See the new clause SHARING (page 15-4) of CREATE SEQUENCE.

CREATE SYNONYM Enhancement

e You can create synonyms that are application common objects. Application
common objects can be shared by application PDBs in an application container.

See the new clause SHARING (page 15-14) of CREATE SYNONYM.

CREATE TABLE and ALTER TABLE Enhancements

* You can create partitioned external tables.

See the external_table_clause (page 15-80) of CREATE TABLE and the clause
alter_external_table (page 12-117) of ALTER TABLE.

* You can specify constraints on external tables.
See External Table Constraints (page 8-23).

* You can specify up to 16 partitioning key columns for list-partitioned tables, and up
to 16 subpartitioning key columns for composite-partitioned tables that use list
subpatrtitioning. In earlier releases, you could specify only one partitioning or
subpartitioning key column.

See the list_values_clause (page 15-102) of CREATE TABLE and ALTER TABLE.

* You can create an automatic list-partitioned table. This type of table enables the
database to create additional list partitions on demand.

See the new clauses AUTOMATIC (page 15-101) of CREATE TABLE and
alter_automatic_partitioning (page 12-119) of ALTER TABLE.

* You can change a nonpartitioned table to a partitioned table.
See the new clause modify_to_partitioned (page 12-152) of ALTER TABLE.

* You can create a table that matches the structure of an existing partitioned table.
The two tables are then eligible for exchanging partitions and subpartitions.

See the new clause FOR EXCHANGE WITH TABLE (page 15-120) of CREATE TABLE.

* You can specify which rows to preserve during the following operations: moving,
splitting, or merging table partitions or subpartitions; moving a table; or converting
a nonpartitioned table to a partitioned table.

See the new clause filter_condition (page 12-148) of ALTER TABLE.
* You can specify read-only mode for a table, partition, or subpartition.
See the new read_only_clause (page 15-94) of CREATE TABLE and ALTER TABLE.

DML operations on a table are allowed while splitting its partitions and
subpartitions.

See the new ONLINE keyword of the clauses split_table_partition (page 12-135) and
split_table_subpartition (page 12-138) of ALTER TABLE.

XXXiii

ORACLE

Changes in This Release for Oracle Database SQL Language Reference

Nonpartitioned tables can be moved as an online operation without blocking any
concurrent DML operations. A table move operation now also supports automatic
index maintenance as part of the move.

See the move_table_clause (page 12-150) of ALTER TABLE.

You can specify whether to invalidate dependent cursors while performing table
partition maintenance operations.

See the new clause { DEFERRED | IMMEDIATE } INVALIDATION (page 12-149) of
ALTER TABLE.

You can create tables that are application common objects. Application common
objects can be shared by application PDBs in an application container.

See the new clause SHARING (page 15-51) of CREATE TABLE.

Table column encryption supports the following additional algorithms: AR1A192,
ARIA256, GOST256, and SEED128.

See the clause encryption_spec (page 15-57) of CREATE TABLE and ALTER TABLE.

When specifying default In-Memory Column Store (IM column store) settings for a
table, you can specify the Oracle RAC or Oracle Active Data Guard instances in
which the table is eligible to be populated in the IM column store.

See the new clause FOR SERVICE (page 15-75) of CREATE TABLE and ALTER TABLE.

You can create Automatic Data Optimization policies that enable, disable, or
recompress tables in the IM column store.

See the new clause ilm_inmemory_policy (page 12-85) of CREATE TABLE and ALTER
TABLE.

Automatic Data Optimization compression policies support an additional
compression method: COLUMN STORE COMPRESS FOR QUERY.

See the clause ilm_compression_policy (page 12-83) of CREATE TABLE and ALTER
TABLE.

CREATE TABLESPACE and ALTER TABLESPACE Enhancements

Tablespace encryption enhancements: You can encrypt both offline and online
tablespaces. You can encrypt undo tablespaces, temporary tablespaces, and the
SYSTEM and SYSAUX tablespaces. Tablespace encryption supports the following
additional algorithms: AR1A192, ARIA256, GOST256, and SEED128.

See the new tablespace_encryption_clause (page 15-151) of CREATE TABLESPACE and
the new clause alter_tablespace_encryption (page 12-188) of ALTER TABLESPACE.

You can create local temporary tablespaces, which are useful for Oracle Real
Application Clusters and Oracle Flex Clusters. They store a separate, nonshared
temp file for each database instance, which can improve 1/0O performance.

See the new LOCAL TEMPORARY TABLESPACE clause of the
temporary_tablespace_clause (page 15-158) of CREATE TABLESPACE.

You can specify a default index compression method for a tablespace.

See the new clause default_index_compression (page 15-152) of CREATE TABLESPACE
and the clause default_tablespace_params (page 12-179) of ALTER TABLESPACE.

In earlier releases of Oracle Database, you could specify a default table
compression method for a tablespace. You can still do this in Oracle Database 12¢

XXXIV

ORACLE

Changes in This Release for Oracle Database SQL Language Reference

Release 2 (12.2), however, the syntax now includes the TABLE keyword to
differentiate it from the new default index compression syntax.

See the new clause default_table _compression (page 15-152) of CREATE TABLESPACE
and the clause default_tablespace_params (page 12-179) of ALTER TABLESPACE.

CREATE USER and ALTER USER Enhancements

e You can assign a local temporary tablespace to a user.

See the new LOCAL keyword for the TEMPORARY TABLESPACE clause of CREATEUSER
(page 15-175) and ALTERUSER (page 12-201).

CREATE VIEW Enhancement

* You can create views that are application common objects. Application common
objects can be shared by application PDBs in an application container.

See the new clause SHARING (page 15-184) of CREATE VIEW.

FLASHBACK DATABASE Enhancement

* You can flash back a PDB.
See the new clause PLUGGABLE (page 18-22) of FLASHBACK DATABASE.

SELECT Enhancement

e The query_tabl e_expression clause of the FROM clause of the SELECT statement now
accepts a hierarchy or an analytic view in a subquery.

See the clause query _table_expression (page 19-58) of SELECT.

New Operator

e The new COLLATE operator determines the collation for an expression. This
operator enables you to override the collation that the database would have
derived for the expression using standard collation derivation rules.

See COLLATE Operator (page 4-3).
New or Enhanced Expressions

* The new calculated measure expression defines a calculated measure in an
analytic view.

See Calculated Measure Expressions (page 5-5).

* JSON object access expressions have been enhanced to let you access specific
elements of a JSON array.

See the clause array_st ep of JSON Object Access Expressions (page 5-25).

Enhanced Condition

e The JSON_EXISTS condition now lets you pass values to the path expression.

See the new clause JSON_passing_clause (page 6-28) of JSON_EXISTS.

New or Enhanced Functions

e Approximate Query Processing Functions

XXXV

ORACLE

Changes in This Release for Oracle Database SQL Language Reference

The following new functions return approximate results with negligible deviation
from the exact result:

— APPROX_MEDIAN (page 7-29) takes a numeric or datetime value and returns
an approximate median value.

— APPROX_PERCENTILE (page 7-32) takes a percentile value and a sort
specification, and returns the value that would fall into that percentile value
with respect to the sort specification.

The following new functions support materialized view-based summary
aggregation strategies for approximate distinct value counts:

— APPROX_COUNT_DISTINCT_DETAIL (page 7-27) calculates information
about the approximate number of rows that contain a distinct value for an
expression and returns a BLOB value, called a detail, which contains that
information in a special format.

— APPROX_COUNT_DISTINCT_AGG (page 7-26) takes as its input a column of
details containing information about approximate distinct value counts, and
enables you to perform aggregations of those counts.

— TO_APPROX_COUNT_DISTINCT (page 7-350) takes as its input a detail
containing information about an approximate distinct value count, and converts
it to a NUMBER value.

The following new functions support materialized view-based summary
aggregation strategies for approximate percentile values:

— APPROX_PERCENTILE_DETAIL (page 7-36) calculates approximate
percentile information for the values and returns a BLOB value, called a detalil,
which contains that information in a special format.

— APPROX_PERCENTILE_AGG (page 7-36) takes as its input a column of
details containing approximate percentile information, and enables you to
perform aggregations of that information.

— TO_APPROX_PERCENTILE (page 7-350) takes as its input a detail containing
approximate percentile information, a percentile value, and a sort specification,
and returns an approximate value that would fall into that percentile value with
respect to the sort specification.

Collation Functions
The following new functions return information about collation settings:

— COLLATION (page 7-74) returns the name of the derived collation for an
expression.

— NLS_COLLATION_ID (page 7-213) takes as its argument a collation name and
returns the corresponding collation ID number.

— NLS_COLLATION_NAME (page 7-213) takes as its argument a collation 1D
number and returns the corresponding collation name.

Conversion Functions

The following conversion functions now allow you to specify a value to be returned
if a conversion error occurs:

— CAST (page 7-50) - In addition, this function now lets you to specify a format
model and NLS parameters to be applied for the conversion.

— TO_BINARY_DOUBLE (page 7-352)

XXXVI

ORACLE

Changes in This Release for Oracle Database SQL Language Reference

— TO_BINARY_FLOAT (page 7-354)
— TO_DATE (page 7-365)

— TO_DSINTERVAL (page 7-367)

— TO_NUMBER (page 7-374)

— TO_TIMESTAMP (page 7-376)

— TO_TIMESTAMP_TZ (page 7-377)
— TO_YMINTERVAL (page 7-379)

The following new function lets you determine whether an expression can be
converted to a specified data type:

— VALIDATE_CONVERSION (page 7-395)

The following new functions allow additional data types to be converted to BLOB,
character, and CLOB values:

— TO_BLOB (bfile) (page 7-355) converts a BFILE value to a BLOB value.

— TO_CHAR (bfile|blob) (page 7-356) converts BFILE or BLOB data to the database
character set.

— TO_CLOB (bfile|blob) (page 7-364) converts BFILE or BLOB data to the database
character set and returns the data as a CLOB value.

Data Mining Functions

The data mining functions are enhanced so they can be applied to models built
using the native algorithms of Oracle, as well as those built using R through the
extensibility mechanism of Oracle Advanced Analytics. See Data Mining Functions
(page 7-9).

The following are new data mining functions:

— FEATURE_COMPARE (page 7-119) uses a Feature Extraction model to
compare two different documents.

— ORA_DM_PARTITION_NAME (page 7-228) returns the name of the partition
associated with the input row.

The syntax of the following functions is enhanced so that the functions can use the
GROUPING hint when scoring a partitioned model:

— CLUSTER_DETAILS (page 7-58)

— CLUSTER_DISTANCE (page 7-62)

— CLUSTER_ID (page 7-64)

— CLUSTER_PROBABILITY (page 7-67)
— CLUSTER_SET (page 7-69)

— FEATURE_COMPARE (page 7-119)

— FEATURE_DETAILS (page 7-121)

— FEATURE_ID (page 7-124)

— FEATURE_SET (page 7-126)

— FEATURE_VALUE (page 7-129)

— ORA_DM_PARTITION_NAME (page 7-228)

XXXVii

Changes in This Release for Oracle Database SQL Language Reference

PREDICTION (page 7-244)
PREDICTION_BOUNDS (page 7-248)
PREDICTION_COST (page 7-250)
PREDICTION_DETAILS (page 7-253)
PREDICTION_PROBABILITY (page 7-258)
PREDICTION_SET (page 7-261)

« JSON Functions

The following new functions enable you to query and generate JavaScript Object
Notation (JSON) data:

JSON_ARRAY (page 7-153) takes as its input one or more SQL expressions,
converts each expression to a JSON value, and returns a JSON array that
contains those JSON values.

JSON_ARRAYAGG (page 7-154) takes as its input a column of SQL
expressions, converts each expression to a JSON value, and returns a single
JSON array that contains those JSON values.

JSON_DATAGUIDE (page 7-156) takes as its input a table column of JSON
data. Each row in the column is referred to as a JSON document. For each
JSON document in the column, this function returns a CLOB value that contains
a flat data guide for that JSON document.

JSON_OBJECT (page 7-157) takes as its input one or more property key-value
pairs, and returns a JSON object that contains an object member for each of
those key-value pairs.

JSON_OBJECTAGG (page 7-159) takes as its input a property key-value pair,
constructs an object member for each key-value pair, and returns a single
JSON object that contains those object members.

The following JSON functions have been enhanced to let you specify a return
value when no match is found:

JSON_QUERY (page 7-161)
JSON_VALUE (page 7-175)

 LISTAGG Function

LISTAGG (page 7-190) now allows you to control how the function behaves
when the return value exceeds the maximum length of the return data type.

New or Enhanced Privileges

The following are new or enhanced system privileges and object privileges:

* The following system privileges, which are listed in Table 18-1 (page 18-41), have
been enhanced:

CREATE JOB and CREATE ANY JOB now allow you to manage resource objects and
incompatibility resource objects.

* The following new system privileges are listed in Table 18-1 (page 18-41):

ORACLE

These system privileges allow the creation and management of analytic views:

CREATE ANALYTIC VIEW, CREATE ANY ANALYTIC VIEW, ALTER ANY ANALYTIC VIEW, DROP
ANY ANALYTIC VIEW

XXXVIII

Changes in This Release for Oracle Database SQL Language Reference

CREATE ATTRIBUTE DIMENSION, CREATE ANY ATTRIBUTE DIMENSION, ALTER ANY ATTRIBUTE
DIMENSION, DROP ANY ATTRIBUTE DIMENSION

CREATE HIERARCHY, CREATE ANY HIERARCHY, ALTER ANY HIERARCHY, and DROP ANY
HIERARCHY

— CREATE LOCKDOWN PROFILE, ALTER LOCKDOWN PROFILE, and DROP LOCKDOWN PROFILE
allow you to manage PDB lockdown profiles.

— INHERIT ANY REMOTE PRIVILEGES allows you to execute definer's rights procedures
or functions that contain current user database links.

— USE ANY JOB RESOURCE allows you to associate any schedule resource object with
any program or job in the grantee’s schema.

» The following new object privileges are listed in Table 18-2 (page 18-53):

— INHERIT REMOTE PRIVILEGES can be granted on a user to users and roles. It
allows the user on whom this privilege is granted to execute definer's rights
procedures or functions that contain current user database links and are
owned by the grantee.

— The USE privilege can be granted on job scheduler objects. It allows you to
associate the specified scheduler resource object with programs and jobs.

New Hints
The following are new hints:

 The CONTAINERS Hint (page 2-97) lets you pass a hint to the query of each PDB
in a CDB or application container during a SELECT ... cont ai ners_cl ause ... query.

* The FRESH_MV Hint (page 2-101) is part of the new real-time materialized view
feature. This hint allows you to fetch up-to-date data from a stale real-time
materialized view.

* The GROUPING Hint (page 2-102) applies to data mining scoring functions when
scoring partitioned models.

* The USE_BAND Hint (page 2-135) and NO_USE_BAND Hint (page 2-120) allow you
to use or exclude band joins in a query. Band joins are new for this release. For
more information, see Band Joins (page 9-13).

Deprecated Features

The following features are deprecated in this release, and may be desupported in a
future release:

* The Oracle Multimedia support for object types that comply with the first edition of
the ISO/IEC 13249-5:2001 SQLMM Part5:Stilllmage standard (commonly referred
to as the SQL/MM Sitill Image standard) is deprecated.

See Oracle Multimedia Reference for more information.

* The XMLROOT (page 7-420) function is deprecated. It is still supported for
backward compatibility. However, Oracle recommends that you instead use the
SQL/XML function XMLSERIALIZE with a version number.

See Oracle XML DB Developer's Guide for more information on the XMLSERIALIZE
function.

ORACLE XXXIX

Changes in This Release for Oracle Database SQL Language Reference

Desupported Features
Some features previously described in this document are desupported in Oracle

Database 12c Release 2 (12.2). See Oracle Database Upgrade Guide for a list of
desupported features.

Changes in Oracle Database 12c Release 1 (12.1.0.2)

The following are changes in Oracle Database SQL Language Reference for Oracle
Database 12c Release 1 (12.1.0.2).

New Features

ORACLE

The following features are new in this release:

The In-Memory Column Store (IM column store) is an optional, static SGA pool
that stores copies of tables and partitions in a special columnar format optimized
for rapid scans.

See the inmemory_table_clause (page 15-73) of CREATE TABLE, the inmemory_clause
(page 15-152) of CREATE TABLESPACE, and the inmemory_table_clause (page 14-20) of
CREATE MATERIALIZED VIEW

See the following hints:

INMEMORY Hint (page 2-108)
NO_INMEMORY Hint (page 2-114)
INMEMORY_PRUNING Hint (page 2-108)
NO_INMEMORY_PRUNING Hint (page 2-114)

Oracle Database now supports JavaScript Object Notation (JSON).
See the following conditions:

— 1S JSON Condition (page 6-24)

— JSON_EXISTS Condition (page 6-26)

— JSON_TEXTCONTAINS Condition (page 6-29)

See the following functions:

— JSON_QUERY (page 7-161)

— JSON_TABLE (page 7-167)

— JSON_VALUE (page 7-175)

See "JSON Object Access Expressions (page 5-25)"

Attribute clustering lets you cluster table data in close physical proximity based
on the content of specified columns.

See the attribute_clustering_clause (page 15-112) of CREATE TABLE and the
attribute_clustering_clause (page 12-92) of ALTER TABLE

See the following hints:
— CLUSTERING Hint (page 2-97)

x|

ORACLE

Changes in This Release for Oracle Database SQL Language Reference

— NO_CLUSTERING Hint (page 2-111)

Zone maps let you reduce the 1/0O and CPU costs of table scans by tracking the
sets of contiguous data blocks, or zones, in which certain column values are
stored. You can use zone maps with or without attribute clustering.

See the statements CREATE MATERIALIZED ZONEMAP (page 14-49), ALTER
MATERIALIZED ZONEMAP (page 11-43), and DROP MATERIALIZED ZONEMAP
(page 17-7), and the zonemap_clause (page 15-113) of CREATE TABLE

See the NO_ZONEMAP Hint (page 2-122) and the function SYS_OP_ZONE_ID
(page 7-341)

You can now create range-partitioned hash clusters.

See the cluster_range_patrtitions (page 13-39) clause of CREATE CLUSTER and the
allocate_extent clause (page 10-39) of ALTER CLUSTER

The new function APPROX_COUNT_DISTINCT returns the approximate number of
distinct values for a column. This function is an alternative to the COUNT function. It
processes large amounts of data significantly faster than COUNT, with negligible
deviation from the exact result.

See APPROX_COUNT_DISTINCT (page 7-25)

A new type of index compression called advanced index compression lets you
improve compression ratios significantly while still providing efficient access to
indexes.

See the advanced_index_compression (page 13-123) clause of CREATE INDEX

For tables compressed with Hybrid Columnar Compression, you can now control
whether row-level locking is used during DML operations.

See the [NO] ROW LEVEL LOCKING (page 15-71) clause of CREATE TABLE

The database now supports force full database caching mode, which allows you
to designate the entire database, including NOCACHE LOBs, as eligible for
caching in the buffer cache.

See the [NO] FORCE FULL DATABASE CACHING (page 10-85) clause of ALTER
DATABASE

When you grant a database role to a user who is responsible for CBAC grants,
you can now specify WITH DELEGATE OPTION in the GRANT statement to prevent giving
the grantee additional privileges on the role. WITH DELEGATE OPTION is an alternative
to WITH ADMIN OPTION. It enables a role to be granted to program units, but it does
not permit the granting of the role to other principals or the administration of the
role itself.

See the WITH DELEGATE OPTION (page 18-36) clause of GRANT

The new READ object privilege and READ ANY TABLE system privilege allow users to
query tables, materialized views, views, and their synonyms.

The READ object privilege is an alternative to the SELECT object privilege. In addition
to querying objects, the SELECT object privilege allows users lock rows of a table
with the LOCK TABLE and SELECT ... FOR UPDATE statements. The READ object privilege
only allows users to query objects. See Table 18-2 (page 18-53) for more
information.

The READ ANY TABLE system privilege is an alternative to the SELECT ANY TABLE system
privilege. In addition to querying objects, the SELECT ANY TABLE privilege allows
users to lock rows of a table with the SELECT ... FOR UPDATE statement. The READ ANY

Xli

Changes in This Release for Oracle Database SQL Language Reference

TABLE privilege only allows users to query objects. See Table 18-1 (page 18-41) for
more information.

Changes in Oracle Database 12c Release 1 (12.1.0.1)

The following are changes in Oracle Database SQL Language Reference for Oracle
Database 12c¢ Release 1 (12.1.0.1).

New Features
The following features are new in this release:

Features that Introduce New SQL Statements
The following features introduce new SQL statements:

* The multitenant architecture offers the capability that enables an Oracle
database to function as a multitenant container database (CDB). A CDB is an
Oracle database that includes one or more pluggable databases (PDBs). A PDB is
a portable collection of schemas, schema objects, and nonschema objects that
appears to an Oracle client as a non-CDB. You can unplug a PDB from a CDB
and plug it into a different CDB.

See the following new statements:

— CREATE PLUGGABLE DATABASE (page 14-71)
— ALTER PLUGGABLE DATABASE (page 11-53)
— DROP PLUGGABLE DATABASE (page 17-12)

* Unified auditing provides a full set of enhanced auditing features. It enables you
to create named unified audit policies, enable or disable unified audit policies,
apply users to or exclude users from policies, and set whether an audit record is
created if the audited behavior fails, succeeds, or both. It also enables you to
capture application context values in audit records.

See the following new statements:

— CREATE AUDIT POLICY (Unified Auditing) (page 13-23)
— ALTER AUDIT POLICY (Unified Auditing) (page 10-31)
— DROP AUDIT POLICY (Unified Auditing) (page 15-209)
— AUDIT (Unified Auditing) (page 12-240)

— NOAUDIT (Unified Auditing) (page 19-11)

* A new unified key management interface for Transparent Data Encryption (TDE)
eases key administration tasks, provides for better compliance and tracking, and
improves separation of duty between the database administrator and security
administrator.

See the new ADMINISTER KEY MANAGEMENT (page 10-5) statement.
ALTER DATABASE Enhancements
The following features provide enhancements to the ALTER DATABASE statement:

* Storage Snapshot Optimization enables you to use a third-party storage
shapshot of the database taken without backup mode for all types of recovery

ORACLE xlii

ORACLE

Changes in This Release for Oracle Database SQL Language Reference

operations, including point-in-time recovery. The ALTER DATABASE statement has
been enhanced with the new SNAPSHOT TIME clause to enable you to recover the
database using such a storage snapshot.

See the new SNAPSHOT TIME clause of the ALTER DATABASE full _database_recovery
(page 10-57) clause.

e Move an online data file to a new location while the database is open and
accessing the data file.

See the new move_datafile_clause (page 10-67) of ALTER DATABASE.
» Create a control file for a Data Guard far sync instance.
See the enhanced controlfile_clauses (page 10-74) of ALTER DATABASE.
e Performing switchovers and failovers to a physical standby database is simplified.

See the new ALTER DATABASE clauses switchover_clause (page 10-78) and
failover_clause (page 10-79).

* Real-time apply is now enabled by default during Redo Apply on a physical
standby database. You can disable real-time apply by specifying USING ARCHIVED
LOGFILE.

See the enhanced managed_standby _recovery (page 10-60) clause of ALTER
DATABASE.

ALTER SYSTEM Enhancements
The following features provide enhancements to the ALTER SYSTEM statement:
* Relocate a client to the least loaded Oracle ASM instance.

See the new RELOCATE CLIENT (page 12-25) clause of ALTER SYSTEM.
* Apply one-off patches released for Oracle ASM in a rolling manner.

See the new rolling_patch_clauses (page 12-16) of ALTER SYSTEM.

AUDIT and NOAUDIT (Traditional Auditing) Enhancements

The following feature provides enhancements to the AUDIT and NOAUDIT statements for
traditional auditing:

* Audit operations on a SQL translation profile.
See the new clause ON SQL TRANSLATION PROFILE (page 12-231) of AUDIT.

CREATE DISKGROUP and ALTER DISKGROUP Enhancements

The following features provide enhancements to the CREATE DISKGROUP statement, ALTER
DISKGROUP statement, or both:

» Check logical data corruptions and repair them automatically in normal and high
redundancy Oracle ASM disks groups.

See the new scrub_clause (page 10-123) of ALTER DISKGROUP.
* Replace a user in an Oracle ASM disk group.
See the enhanced user_clauses (page 10-121) of ALTER DISKGROUP.

* Change the permissions, owner, and user group of an Oracle ASM disk group file
while it is open.

xliii

Changes in This Release for Oracle Database SQL Language Reference

See the enhanced ALTER DISKGROUP clauses file_permissions_clause (page 10-122)
and the file_owner _clause (page 10-122).

e Replace one or more disks in an Oracle ASM disk group with a single operation.
See the new replace_disk_clause (page 10-109) of ALTER DISKGROUP.

* Rename a disk in an Oracle ASM disk group.
See the new rename_disk_clause (page 10-110) of ALTER DISKGROUP.

e The following are new Oracle ASM disk group attributes:

— CONTENT.CHECK allows you to enable or disable content checking when
performing data copy operations for rebalancing a disk group.

— FAILGROUP_REPAIR_TIME allows you to specify a default repair time for the failure
groups in the disk group.

— PHYS_META_REPLICATED allows you to track the replication status of a disk group.

— THIN_PROVISIONED allows you to enable or disable the functionality to discard
unused storage space after a disk group rebalance is completed.

See Table 13-2 (page 13-88).

CREATE FLASHBACK ARCHIVE and ALTER FLASHBACK ARCHIVE
Enhancements

The following feature provides enhancements to the CREATE FLASHBACK ARCHIVE and
ALTER FLASHBACK ARCHIVE statements:

* Instruct the database to optimize the storage of data in history tables.
See the new clause [NO] OPTIMIZE DATA (page 13-97) of CREATE FLASHBACK ARCHIVE
and the new clause [NO] OPTIMIZE DATA (page 10-133) of ALTER FLASHBACK ARCHVE.

CREATE INDEX and ALTER INDEX Enhancements

The following features provide enhancements to the CREATE INDEX statement, ALTER
INDEX statement, or both:

* Create partial indexes on a subset of the partitions of a table.
See the new partial_index_clause (page 13-124) of CREATE INDEX.

* Remove orphaned index entries for records that were previously dropped or
truncated by a table partition maintenance operation.

See the new keyword CLEANUP (page 10-152) of ALTER INDEX ... COALESCE and the
new keyword CLEANUP (page 10-154) of ALTER INDEX ... MODIFY PARTITION ... COALESCE.

* Create multiple indexes on the same set of columns, column expressions, or both
if the indexes are of different types, use different partitioning, or have different
unigueness properties.

See the index_expr (page 13-117) clause of CREATE INDEX.
CREATE INDEXTYPE and ALTER INDEXTYPE Enhancements

The following feature provides enhancements to the CREATE INDEXTYPE and ALTER
INDEXTYPE statements:

* Create domain indexes on hash- and interval-partitioned tables.

ORACLE xliv

ORACLE

Changes in This Release for Oracle Database SQL Language Reference

See CREATE INDEXTYPE (page 13-141) and ALTER INDEXTYPE (page 10-159).

CREATE MATERIALIZED VIEW and ALTER MATERIALIZED VIEW Enhancements

The following feature provides enhancements to the CREATE MATERIALIZED VIEW and
ALTER MATERIALIZED VIEW statements:

e Materialized views, which are noneditioned objects, can depend on editioned
objects.

See:

— The new clauses evaluation_edition_clause (page 14-29) and
unusable_editions_clause (page 14-32) of CREATE MATERIALIZED VIEW

— The new clauses evaluation_edition_clause (page 11-30) and
unusable_editions_clause (page 11-31) of ALTER MATERIALIZEED VIEW

CREATE MATERIALIZED VIEW LOG and ALTER MATERIALIZED VIEW LOG
Enhancements

The following feature provides enhancements to the CREATE MATERIALIZED VIEW LOG and
ALTER MATERIALIZED VIEW LOG statements:

» Specify the refresh method for which a materialized view log will be used. You can
specify synchronous refresh, which is introduced in Oracle Database 12c, or fast
refresh, which is also available in earlier releases.

See:
— The new for_refresh_clause (page 14-47) of CREATE MATERIALIZED VIEW LOG
— The new for_refresh_clause (page 11-42) of ALTER MATERIALIZED VIEW LOG

CREATE SEQUENCE and ALTER SEQUENCE Enhancements

The following features provide enhancements to the CREATE SEQUENCE and ALTER
SEQUENCE statements:

e Control whether the sequence pseudocolumn NEXTVAL retains its original value
during replay for Application Continuity.

See:

— The new clauses KEEP (page 15-6) and NOKEEP (page 15-6) of CREATE
SEQUENCE

— The new clauses KEEP and NOKEEP of ALTER SEQUENCE (page 11-84)

e Create a session sequence, which is a special type of sequence that is specifically
designed to be used with global temporary tables that have session visibility.

See:

— The new clauses SESSION (page 15-7) and GLOBAL (page 15-7) of CREATE
SEQUENCE

— The new clauses SESSION and GLOBAL of ALTER SEQUENCE (page 11-84)

CREATE TABLE and ALTER TABLE Enhancements

The following features provide enhancements to the CREATE TABLE statement, ALTER
TABLE statement, or both:

b\

ORACLE

Changes in This Release for Oracle Database SQL Language Reference

The maximum size for the VARCHAR2, NVARCHAR2, and RAW data types is increased to
32767 bytes.

See "Extended Data Types (page 2-32)".

Temporal Validity support enables you to associate a valid time dimension with a
table. You can use Oracle Flashback Query to retrieve rows from that table based
on whether they are considered valid as of a specified time or during a specified
time period.

See:
— The new CREATE TABLE clause period_definition (page 15-63)

— The new ALTER TABLE clauses add_period_clause (page 12-111) and
drop_period_clause (page 12-111)

— The enhanced SELECT flashback_query_clause (page 19-58)
Virtual columns, which are noneditioned objects, can depend on editioned objects.
See:

— The new clauses evaluation_edition_clause (page 15-60) and
unusable_editions_clause (page 15-60) of CREATE TABLE

— The new clause modify_virtcol_properties (page 12-106) of ALTER TABLE

Performance has been improved when you specify a DEFAULT value for a nullable
column.

See the DEFAULT (page 12-96) clause of ALTER TABLE.

Specify a default column value that includes the sequence pseudocolumns CURRVAL
and NEXTVAL.

See:
— The DEFAULT (page 15-55) clause of CREATE TABLE
— The DEFAULT (page 12-96) clause of ALTER TABLE

The DEFAULT clause has the new clause ON NULL, which instructs the database to
assign a specified default column value when an INSERT statement attempts to
assign a value that evaluates to NULL.

See:
— The ON NULL (page 15-56) clause of CREATE TABLE
— The ON NULL (page 12-97) clause of ALTER TABLE

Specify an identity column, which is assigned an increasing or decreasing integer
value from a sequence generator.

See:

— The new clauses identity_clause (page 15-56) of CREATE TABLE and
identity options (page 15-56) of CREATE TABLE

— The new clauses identity_clause (page 12-97) of ALTER TABLE and
identity_options (page 12-97) of ALTER TABLE

Hide and unhide columns in tables.
See:
— The new clauses VISIBLE | INVISIBLE (page 15-54) of CREATE TABLE

XIvi

ORACLE

Changes in This Release for Oracle Database SQL Language Reference

— The new clauses VISIBLE | INVISIBLE (page 15-60) of CREATE TABLE for virtual
columns

— The new clause modify_col_visibility (page 12-106) of ALTER TABLE
Recursively cascade a truncate operation to child tables.

See the new keyword CASCADE (page 12-135) of the clause
truncate_partition_subpart of ALTER TABLE.

Recursively cascade an exchange operation to child tables.

See the new keyword CASCADE (page 12-144) of the clause
exchange_partition_subpart of ALTER TABLE.

Store XMLType data, and abstract data types that contain attributes of type XMLType,
CLOB, BLOB, Or NCLOB, in an ANYDATA column.

See the new clause modify_opaque_type (page 12-153) of ALTER TABLE.
Enable a table for row archival for In-Database Archiving.

See the new ROW ARCHIVAL (page 15-120) clause of CREATE TABLE.
Manage policies for Automatic Data Optimization.

See the new ilm_clause (page 15-77) of CREATE TABLE and the new ilm_clause
(page 12-82) of ALTER TABLE.

Create a reference-partitioned child table whose parent is an interval-partitioned
table.

See the enhanced clause reference_patrtitioning (page 15-109) of CREATE TABLE.

Specify multiple table partitions or table subpartitions for the following ALTER TABLE
operations:

— Add one or more range, list, or system partitions to a table. See
add_table_patrtition (page 12-128).

— Add one or more range subpartitions to a partition. See
add_range_subpartition (page 12-123).

— Add one or more list subpartitions to a partition. See add_list_subpartition
(page 12-123).

— Split one range or list partition into two or more partitions. See
split_table_partition (page 12-135).

— Split one range or list subpartition into two or more subpatrtitions. See
split_table_subpartition (page 12-138).

— Merge two or more range, list, or system partitions into one new partition. See
merge_table_partitions (page 12-140).

— Merge two or more range or list subpartitions into one new subpartition. See
merge_table_subpartitions (page 12-141).

— Truncate one or more partitions or subpartitions. See
truncate_partition_subpart (page 12-134).

— Drop one or more partitions. See drop_table_partition (page 12-131).

— Drop one or more subpartitions. See drop_table_subpartition (page 12-133).

xIvii

ORACLE

Changes in This Release for Oracle Database SQL Language Reference

In earlier releases, the following DDL operations required a DML-blocking lock.
You can use the new ONLINE keyword to allow the execution of DML statements
during the following DDL operations:

— Dropping an index (using DROP INDEX ... ONLINE (page 16-13) ...)

— Marking an index as UNUSABLE (using ALTER INDEX ... UNUSABLE ONLINE
(page 10-151))

— Marking a column as UNUSED (using ALTER TABLE ... SET UNUSED ... ONLINE
(page 12-108) ...)

— Dropping a constraint (using ALTER TABLE ... DROP ... ONLINE (page 12-116) ...)

— Moving a table partition (using ALTER TABLE ... MOVE PARTITION ... ONLINE
(page 12-127))

— Moving a table subpartition (using ALTER TABLE ... MOVE SUBPARTITION ... ONLINE
(page 12-127))

CREATE VIEW Enhancements

The following features provide enhancements to the CREATE VIEW statement:

Hide and unhide columns in views.
See the new clause VISIBLE | INVISIBLE (page 15-185) of CREATE VIEW.

Specify whether functions referenced in the view are executed using the view
invoker's rights or the view definer's rights.

See the new clause BEQUEATH (page 15-188) of CREATE VIEW.

GRANT and REVOKE Enhancements

The following features provide enhancements to the GRANT and REVOKE statements:

Grant object privileges on a user to users and roles.

See:

— The new clause ON USER (page 18-38) of GRANT

— The new clause ON USER (page 19-27) of REVOKE

Grant object privileges on a SQL translation profile to users and roles.

See:

— The new clause ON SQL TRANSLATION PROFILE (page 18-39) of GRANT
— The new clause ON SQL TRANSLATION PROFILE (page 19-28) of REVOKE
Grant code based access control (CBAC) roles to program units.

See:

— The new clause grant_roles_to_programs (page 18-40) of GRANT

— The new clause revoke_roles_from_programs (page 19-28) of REVOKE

SELECT Enhancements

The following features provide enhancements to the SELECT statement:

Pattern matching enables you to recognize patterns found across multiple rows
in a table.

xIVviii

ORACLE

Changes in This Release for Oracle Database SQL Language Reference

See the new row_pattern_clause (page 19-85) of SELECT.

Perform top-N queries by specifying an offset, and the number of rows or
percentage of rows to return.

See the new row_limiting_clause (page 19-82) of SELECT.

In a query that performs outer joins of more than two pairs of tables, a single table
can now be the null-generated table for multiple tables.

See "Outer Joins (page 9-13)".

Perform a variation of an ANSI CROSS JOIN or an ANSI LEFT OUTER JOIN with left
correlation support. You can specify a table reference or collection expression on
the right side of the join clause.

See the new cross_outer_apply_clause (page 19-71) of SELECT.
Specify a lateral inline view in a query expression.
See the new keyword LATERAL (page 19-58) of SELECT.

Declare and define PL/SQL functions and procedures in the WITH clause of a
guery. You can then reference the PL/SQL functions in the query and its
subqueries.

See the new clause plsql_declarations (page 19-52) on SELECT.

TRUNCATE TABLE Enhancements

The following feature provides enhancements to the TRUNCATE TABLE statement:

Recursively truncate child tables.

See the new clause CASCADE (page 19-134) of TRUNCATE TABLE.

New or Enhanced Functions

The following are new or enhanced functions:

CLUSTER_DETAILS (page 7-58) is a new function that predicts cluster
membership for each row. It can use a pre-defined clustering model or perform
dynamic clustering. The function returns an XML string that describes the
predicted cluster or a specified cluster.

CLUSTER_DISTANCE (page 7-62) is a new function that predicts cluster
membership for each row. It can use a pre-defined clustering model or perform
dynamic clustering. The function returns the raw distance between each row and
the centroid of either the predicted cluster or a specified.

CLUSTER_ID (page 7-64) has been enhanced so that it can either use a pre-
defined clustering model or perform dynamic clustering.

CLUSTER_PROBABILITY (page 7-67) has been enhanced so that it can either
use a pre-defined clustering model or perform dynamic clustering. The data type of
the return value has been changed from NUMBER to BINARY_DOUBLE.

CLUSTER_SET (page 7-69) has been enhanced so that it can either use a pre-
defined clustering model or perform dynamic clustering. The data type of the
returned probability has been changed from NUMBER to BINARY_DOUBLE

FEATURE_DETAILS (page 7-121) is a new function that predicts feature matches
for each row. It can use a pre-defined feature extraction model or perform dynamic

xlix

ORACLE

Changes in This Release for Oracle Database SQL Language Reference

feature extraction. The function returns an XML string that describes the predicted
feature or a specified feature.

FEATURE_ID (page 7-124) has been enhanced so that it can either use a pre-
defined feature extraction model or perform dynamic feature extraction.

FEATURE_SET (page 7-126) has been enhanced so that it can either use a pre-
defined feature extraction model or perform dynamic feature extraction. The data
type of the returned probability has been changed from NUMBER to BINARY_DOUBLE.

FEATURE_VALUE (page 7-129) has been enhanced so that it can either use a pre-
defined feature extraction model or perform dynamic feature extraction. The data
type of the return value has been changed from NUMBER to BINARY_DOUBLE.

ORA_INVOKING_USER (page 7-233) is a new function that returns the name of
the database user who invoked the current statement or view. This function takes
into account the BEQUEATH property of intervening views referenced in the
statement.

ORA_INVOKING_USERID (page 7-233) is a new function that returns the identifier
of the database user who invoked the current statement or view. This function
takes into account the BEQUEATH property of intervening views referenced in the
statement.

PREDICTION (page 7-244) has been enhanced so that it can either use a pre-
defined predictive model or perform dynamic prediction.

PREDICTION_BOUNDS (page 7-248) now returns the upper and lower bounds of
the prediction as the BINARY_DOUBLE data type. It previously returned these values
as the NUMBER data type.

PREDICTION_COST (page 7-250) has been enhanced so that it can either use a
pre-defined predictive model or perform dynamic prediction. The data type of the
returned cost has been changed from NUMBER to BINARY_DOUBLE.

PREDICTION_DETAILS (page 7-253) has been enhanced so that it can either use
a pre-defined predictive model or perform dynamic prediction.

PREDICTION_PROBABILITY (page 7-258) has been enhanced so that it can either
use a pre-defined predictive model or perform dynamic prediction. The data type
of the returned probability has been changed from NUMBER to BINARY_DOUBLE.

PREDICTION_SET (page 7-261) has been enhanced so that it can either use a
pre-defined predictive model or perform dynamic prediction. The data type of the
returned probability has been changed from NUMBER to BINARY_DOUBLE.

STANDARD_HASH (page 7-309) is a new function that computes a hash value for
a given expression using one of several standardized hash algorithms.

SYS_CONTEXT (page 7-332) enables you to query a new built-in namespace,
SYS_SESSION_ROLES, which allows you to determine if a specified role is currently
enabled for the session.

New or Enhanced Privileges

The following are new or enhanced system privileges and object privileges:

The behavior has changed for the following system privilege, which is listed in
Table 18-1 (page 18-41):

— SELECT ANY DICTIONARY now does not allow you to query the following objects in
the SYS schema: DEFAULT_PWD$, ENC$, LINKS, USER$, USER_HISTORYS$, and
XS$VERIFIERS.

ORACLE

Changes in This Release for Oracle Database SQL Language Reference

The following new system privileges are listed in Table 18-1 (page 18-41):

CREATE SQL TRANSLATION PROFILE, CREATE ANY SQL TRANSLATION PROFILE, ALTER ANY
SQL TRANSLATION PROFILE, USE ANY SQL TRANSLATION PROFILE, and DROP ANY SQL
TRANSLATION PROFILE allow you to manage SQL translation profiles.

EXEMPT REDACTION POLICY allows you to bypass any existing Oracle Data
Redaction policies.

INHERIT ANY PRIVILEGES allows you to execute invoker's rights procedures with
the privileges of the invoker.

KEEP DATE TIME allows the SYSDATE and SYSTIMESTAMP functions to return their
original values during replay for Application Continuity.

KEEP SYSGUID allows the SYS_GUID function to return its original value during
replay for Application Continuity.

LOGMINING allows you to perform LogMiner operations in a multitenant
container database (CDB).

PURGE DBA_RECYCLEBIN allows you to remove all objects from the system-wide
recycle bin.

SYSBACKUP allows you to perform backup and recovery tasks.
SYSDG allows you to manage Oracle Data Guard.
SYSKM allows you to perform encryption key management.

TRANSLATE ANY SQL allows you to translate SQL for any user.

The following new object privileges are listed in Table 18-2 (page 18-53):

The ALTER and USE privileges authorize operations on SQL translation profiles.

INHERIT PRIVILEGES is a new type of object privilege that can be granted on a
user to users and roles. It allows invoker's rights procedures owned by the
grantee to be executed with the privileges of the invoker when the invoker is
the user on whom this privilege is granted.

KEEP SEQUENCE allows the sequence pseudocolumn NEXTVAL to retain its original
value during replay for Application Continuity.

TRANSLATE SQL is a new type of object privilege that can be granted on a user to
users and roles. It allows the grantee to translate SQL through the grantee's
SQL translation profile for the user on whom this privilege is granted.

New Hints

The following are new hints:

The GATHER_OPTIMIZER_STATISTICS Hint (page 2-102) and
NO_GATHER_OPTIMIZER_STATISTICS Hint (page 2-112) allow you to enable
and disable statistics gathering during bulk loads.

The PQ_CONCURRENT_UNION Hint (page 2-127) and
NO_PQ_CONCURRENT_UNION Hint (page 2-116) allow you to enable and
disable concurrent processing of UNION and UNION ALL operations.

The PQ_FILTER Hint (page 2-130) allows you to instruct the optimizer on how to
process rows when filtering correlated subqueries.

Changes in This Release for Oracle Database SQL Language Reference

* The PQ_SKEW Hint (page 2-130) and NO_PQ_SKEW Hint (page 2-117) allow you
to advise the optimizer of whether the distribution of the values of the join keys for
a parallel join is skewed.

 The USE_CUBE Hint (page 2-136) and NO_USE_CUBE Hint (page 2-120) allow you
to specify whether to use or exclude cube joins.

Deprecated Features

The following features are deprecated in this release, and may be desupported in a
future release:

» Stored outlines are deprecated. They are still supported for backward
compatibility. However, Oracle recommends that you use SQL plan management
instead. SQL plan management creates SQL plan baselines, which offer superior
SQL performance stability compared with stored outlines.

See Oracle Database SQL Tuning Guide for more information about SQL plan
management.

» The use of PKI encryption with Transparent Data Encryption is deprecated. To
configure Transparent Data Encryption, use the ADMINISTER KEY
MANAGEMENT (page 10-5) statement.

See Oracle Database Advanced Security Guide for more information.

Desupported Features

Some features previously described in this document are desupported in Oracle
Database 12c¢ Release 1 (12.1). See Oracle Database Upgrade Guide for a list of
desupported features.

ORACLE lii

Introduction to Oracle SQL

Structured Query Language (SQL) is the set of statements with which all programs
and users access data in an Oracle Database. Application programs and Oracle tools
often allow users access to the database without using SQL directly, but these
applications in turn must use SQL when executing the user's request. This chapter
provides background information on SQL as used by most database systems.

This chapter contains these topics:
e History of SQL (page 1-1)
e SQL Standards (page 1-1)
* Lexical Conventions (page 1-3)

e Tools Support (page 1-3)

1.1 History of SQL

Dr. E. F. Codd published the paper, "A Relational Model of Data for Large Shared
Data Banks", in June 1970 in the Association of Computer Machinery (ACM) journal,
Communications of the ACM. Codd's model is now accepted as the definitive model
for relational database management systems (RDBMS). The language, Structured
English Query Language (SEQUEL) was developed by IBM Corporation, Inc., to use
Codd's model. SEQUEL later became SQL (still pronounced "sequel™). In 1979,
Relational Software, Inc. (how Oracle) introduced the first commercially available
implementation of SQL. Today, SQL is accepted as the standard RDBMS language.

1.2 SQL Standards

Oracle strives to comply with industry-accepted standards and participates actively in
SQL standards committees. Industry-accepted committees are the American National
Standards Institute (ANSI) and the International Organization for Standardization
(ISO), which is affiliated with the International Electrotechnical Commission (IEC). Both
ANSI and the ISO/IEC have accepted SQL as the standard language for relational
databases. When a new SQL standard is simultaneously published by these
organizations, the names of the standards conform to conventions used by the
organization, but the standards are technically identical.

See Also:

Oracle and Standard SQL (page C-1) for a detailed description of Oracle
Database conformance to the SQL standard

ORACLE 1-1

Chapter 1
Using Enterprise Manager

1.2.1 How SQL Works

The strengths of SQL provide benefits for all types of users, including application
programmers, database administrators, managers, and end users. Technically
speaking, SQL is a data sublanguage. The purpose of SQL is to provide an interface
to a relational database such as Oracle Database, and all SQL statements are
instructions to the database. In this SQL differs from general-purpose programming
languages like C and BASIC. Among the features of SQL are the following:

* It processes sets of data as groups rather than as individual units.
» It provides automatic navigation to the data.

* It uses statements that are complex and powerful individually, and that therefore
stand alone. Flow-control statements, such as begin-end, if-then-else, loops, and
exception condition handling, were initially not part of SQL and the SQL standard,
but they can now be found in ISO/IEC 9075-4 - Persistent Stored Modules (SQL/
PSM). The PL/SQL extension to Oracle SQL is similar to PSM.

SQL lets you work with data at the logical level. You need to be concerned with the
implementation details only when you want to manipulate the data. For example, to
retrieve a set of rows from a table, you define a condition used to filter the rows. All
rows satisfying the condition are retrieved in a single step and can be passed as a unit
to the user, to another SQL statement, or to an application. You need not deal with the
rows one by one, nor do you have to worry about how they are physically stored or
retrieved. All SQL statements use the optimizer, a part of Oracle Database that
determines the most efficient means of accessing the specified data. Oracle also
provides techniques that you can use to make the optimizer perform its job better.

SQL provides statements for a variety of tasks, including:
* Querying data

* Inserting, updating, and deleting rows in a table

» Creating, replacing, altering, and dropping objects

» Controlling access to the database and its objects

* Guaranteeing database consistency and integrity

SQL unifies all of the preceding tasks in one consistent language.

1.2.2 Common Language for All Relational Databases

1.3 Using

ORACLE

All major relational database management systems support SQL, so you can transfer
all skills you have gained with SQL from one database to another. In addition, all
programs written in SQL are portable. They can often be moved from one database to
another with very little modification.

Enterprise Manager

Many of the operations you can accomplish using SQL syntax can be done much
more easily using Enterprise Manager. For more information, see the Oracle
Enterprise Manager documentation set, Oracle Database 2 Day DBA, or any of the
Oracle Database 2 Day + books.

1-2

Chapter 1
Lexical Conventions

1.4 Lexical Conventions

The following lexical conventions for issuing SQL statements apply specifically to the
Oracle Database implementation of SQL, but are generally acceptable in other SQL
implementations.

When you issue a SQL statement, you can include one or more tabs, carriage returns,
spaces, or comments anywhere a space occurs within the definition of the statement.
Thus, Oracle Database evaluates the following two statements in the same manner:

SELECT last_name,salary*12,MONTHS_BETWEEN(SYSDATE,hire_date)
FROM employees
WHERE department_id = 30
ORDER BY last_name;

SELECT last_name,
salary * 12,
MONTHS_BETWEEN(SYSDATE, hire_date)
FROM employees
WHERE department_id=30
ORDER BY last_name;

Case is insignificant in reserved words, keywords, identifiers, and parameters.
However, case is significant in text literals and quoted names. Refer to Text Literals
(page 2-55) for a syntax description of text literals.

Note:

SQL statements are terminated differently in different programming
environments. This documentation set uses the default SQL*Plus character,
the semicolon (;).

1.5 Tools Support

ORACLE

Oracle provides a number of utilities to facilitate your SQL development process:

e Oracle SQL Developer is a graphical tool that lets you browse, create, edit, and
delete (drop) database objects, edit and debug PL/SQL code, run SQL statements
and scripts, manipulate and export data, and create and view reports. With SQL
Developer, you can connect to any target Oracle Database schema using
standard Oracle Database authentication. Once connected, you can perform
operations on objects in the database. You can also connect to schemas for
selected third-party (non-Oracle) databases, such as MySQL, Microsoft SQL
Server, and Microsoft Access, view metadata and data in these databases, and
migrate these databases to Oracle.

e SQL*Plus is an interactive and batch query tool that is installed with every Oracle
Database server or client installation. It has a command-line user interface and a
Web-based user interface called iSQL*Plus.

e Oracle JDeveloper is a multiple-platform integrated development environment
supporting the complete lifecycle of development for Java, Web services, and
SQL. It provides a graphical interface for executing and tuning SQL statements

1-3

ORACLE

Chapter 1
Tools Support

and a visual schema diagrammer (database modeler). It also supports editing,
compiling, and debugging PL/SQL applications.

Oracle Application Express is a hosted environment for developing and deploying
database-related Web applications. SQL Workshop is a component of Oracle
Application Express that lets you view and manage database objects from a Web
browser. SQL Workshop offers quick access to a SQL command processor and a
SQL script repository.

See Also:

SQL*Plus User's Guide and Reference and Oracle Application Express App
Builder User’s Guide for more information on these products

The Oracle Call Interface and Oracle precompilers let you embed standard SQL
statements within a procedure programming language.

The Oracle Call Interface (OCI) lets you embed SQL statements in C programs.

The Oracle precompilers, Pro*C/C++ and Pro*COBOL, interpret embedded SQL
statements and translate them into statements that can be understood by C/C++
and COBOL compilers, respectively.

See Also:

Oracle C++ Call Interface Programmer's Guide, Pro*COBOL Programmer's
Guide, and Oracle Call Interface Programmer's Guide for additional
information on the embedded SQL statements allowed in each product

Most (but not all) Oracle tools also support all features of Oracle SQL. This reference
describes the complete functionality of SQL. If the Oracle tool that you are using does
not support this complete functionality, then you can find a discussion of the
restrictions in the manual describing the tool, such as SQL*Plus User's Guide and
Reference.

1-4

Basic Elements of Oracle SQL

This chapter contains reference information on the basic elements of Oracle SQL.
These elements are the simplest building blocks of SQL statements. Therefore, before
using the SQL statements described in this book, you should familiarize yourself with
the concepts covered in this chapter.

This chapter contains these sections:

» Data Types (page 2-1)

» Data Type Comparison Rules (page 2-44)

e Literals (page 2-55)

* Format Models (page 2-67)

* Nulls (page 2-84)

« Comments (page 2-85)

» Database Objects (page 2-138)

* Database Object Names and Qualifiers (page 2-139)

* Syntax for Schema Objects and Parts in SQL Statements (page 2-145)

2.1 Data Types

Each value manipulated by Oracle Database has a data type. The data type of a
value associates a fixed set of properties with the value. These properties cause
Oracle to treat values of one data type differently from values of another. For example,
you can add values of NUMBER data type, but not values of RAW data type.

When you create a table or cluster, you must specify a data type for each of its
columns. When you create a procedure or stored function, you must specify a data
type for each of its arguments. These data types define the domain of values that each
column can contain or each argument can have. For example, DATE columns cannot
accept the value February 29 (except for a leap year) or the values 2 or 'SHOE'. Each
value subsequently placed in a column assumes the data type of the column. For
example, if you insert "01-JAN-98" into a DATE column, then Oracle treats the "01-
JAN-98" character string as a DATE value after verifying that it translates to a valid date.

Oracle Database provides a number of built-in data types as well as several categories
for user-defined types that can be used as data types. The syntax of Oracle data types
appears in the diagrams that follow. The text of this section is divided into the following
sections:

e Oracle Built-in Data Types (page 2-6)

* ANSI, DB2, and SQL/DS Data Types (page 2-34)
» User-Defined Types (page 2-36)

* Oracle-Supplied Types (page 2-38)

ORACLE 2-1

Chapter 2
Data Types

» Data Type Comparison Rules (page 2-44)
» Data Conversion (page 2-48)

A data type is either scalar or nonscalar. A scalar type contains an atomic value,
whereas a nonscalar (sometimes called a "collection”) contains a set of values. A large
object (LOB) is a special form of scalar data type representing a large scalar value of
binary or character data. LOBs are subject to some restrictions that do not affect other
scalar types because of their size. Those restrictions are documented in the context of
the relevant SQL syntax.

See Also:

Restrictions on LOB Columns (page 2-30)

The Oracle precompilers recognize other data types in embedded SQL programs.
These data types are called external data types and are associated with host
variables. Do not confuse built-in data types and user-defined types with external data
types. For information on external data types, including how Oracle converts between
them and built-in data types or user-defined types, see Pro*COBOL Programmer's
Guide, and Pro*C/C++ Programmer's Guide.

datatypes::=

Oracle_built_in_datatypes

ANSI_supported_datatypes

user_defined_types

i

Oracle_supplied_types

The Oracle built-in data types appear in the figures that follows. For descriptions, refer
to Oracle Built-in Data Types (page 2-6).

Oracle_built_in_datatypes::=

character_datatypes

number_datatypes

—Clong_and_raw_datatypes)—

datetime_datatypes
large_object_datatypes
rowid_datatypes

ORACLE 2-2

Chapter 2
Data Types

character_datatypes::=

l'
—olc oN
CHAR
l'
-CHAF{
—- (O(size 0)
—| NCHAR

number_datatypes::=

NUMBER

“ precision 0

BINARY_FLOAT

BINARY_DOUBLE

long_and_raw_datatypes::=

ol .
FHO@O

datetime_datatypes::=

f| DATE
LOCAL

f9®—>(fractional_seconds_precisionm WITH [— TIME [5{ ZONE
—|TIMESTAMP

® O
-| INTERVAL |->| YEAR } TO H MONTH

“ a ﬁ@a(fractional_seconds_precisionm
INTERVAL +§ DAY TO H SECOND

ORACLE' 23

large_object_datatypes::=

rowid_datatypes::=

ROWID

D@0 [

UROWID

Chapter 2
Data Types

The ANSI-supported data types appear in the figure that follows. ANSI, DB2, and
SQL/DS Data Types (page 2-34) discusses the mapping of ANSI-supported data

types to Oracle built-in data types.

ANSI_supported_datatypes::=

.-VARYlNG
,| CHARACTER
CHAR
el D@

Hl

NCHAR
®

scale
—— DECIMAL

DEC

INT

L

|

-| DOUBLE |_>| PRECISION }

\| REAL

ORACLE

2-4

Chapter 2
Data Types

For descriptions of user-defined types, refer to User-Defined Types (page 2-36).

The Oracle-supplied data types appear in the figures that follows. For descriptions,
refer to Oracle-Supplied Types (page 2-38).

Oracle_supplied_types::=

any_types::=

SYS.AnyData
l SYS.AnyType .
l SYS.AnyDataSet '

For descriptions of the Any types, refer to Any Types (page 2-38).

XML_types::=
X

T

For descriptions of the XML types, refer to XML Types (page 2-39).

spatial_types::=

SDO_Geometry

SDO_Topo_Geometry

SDO_GeoRaster

For descriptions of the spatial types, refer to Spatial Types (page 2-41).

ORACLE

2-5

Chapter 2
Data Types

media_types::=

ORDAudio
ORDImage
ORDVideo
ORDDoc

ORDDicom

\CstiII_image_object_types)J

thi

still_image_object _types::=

SI_Stilllmage
SI_AverageColor
SI_PositionalColor
——{ SI_ColorHistogram |H—
Sl_Texture

SI_FeatureList

SI_Color

i

For descriptions of the media types, refer to Media Types (page 2-42).

2.1.1 Oracle Built-in Data Types

The table that follows summarizes Oracle built-in data types. Refer to the syntax in the
preceding sections for the syntactic elements. The codes listed for the data types are
used internally by Oracle Database. The data type code of a column or object attribute
is returned by the DUMP function.

Table 2-1 Built-in Data Type Summary

Code Data Type Description

1 VARCHAR2(si ze [BYTE | CHAR]) Variable-length character string having maximum length si ze
bytes or characters. You must specify si ze for VARCHAR2.
Minimum si ze is 1 byte or 1 character. Maximum size is:
e 32767 bytes or characters if MAX_STRING_SIZE = EXTENDED
e 4000 bytes or characters if MAX_STRING_SIZE = STANDARD
Refer to Extended Data Types (page 2-32) for more information
on the MAX_STRING_SIZE initialization parameter.

BYTE indicates that the column will have byte length semantics.
CHAR indicates that the column will have character semantics.

ORACLE 2-6

Chapter 2
Data Types

Table 2-1 (Cont.) Built-in Data Type Summary

Code

Data Type

Description

1

NVARCHAR2(si ze)

Variable-length Unicode character string having maximum length
si ze characters. You must specify si ze for N\VARCHAR2. The
number of bytes can be up to two times si ze for ALL6UTF16
encoding and three times si ze for UTF8 encoding. Maximum

si ze is determined by the national character set definition, with
an upper limit of:

32767 bytes if MAX_STRING_SIZE = EXTENDED
4000 bytes if MAX_STRING_SIZE = STANDARD

Refer to Extended Data Types (page 2-32) for more information
on the MAX_STRING_SIZE initialization parameter.

NUMBER [(p [, s])]

Number having precision p and scale s. The precision p can
range from 1 to 38. The scale s can range from -84 to 127. Both
precision and scale are in decimal digits. A NUMBER value requires
from 1 to 22 bytes.

FLOAT [(p)]

A subtype of the NUMBER data type having precision p. A FLOAT
value is represented internally as NUMBER. The precision p can
range from 1 to 126 binary digits. A FLOAT value requires from 1
to 22 bytes.

LONG

Character data of variable length up to 2 gigabytes, or 231 -1
bytes. Provided for backward compatibility.

12

DATE

Valid date range from January 1, 4712 BC, to December 31,
9999 AD. The default format is determined explicitly by the
NLS_DATE_FORMAT parameter or implicitly by the NLS_TERRITORY
parameter. The size is fixed at 7 bytes. This data type contains
the datetime fields YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND. It
does not have fractional seconds or a time zone.

100

BINARY_FLOAT

32-bit floating point number. This data type requires 4 bytes.

101

BINARY_DOUBLE

64-bit floating point number. This data type requires 8 bytes.

180

TIMESTAMP
[(fractional _seconds_precision)]

Year, month, and day values of date, as well as hour, minute,
and second values of time, where

fractional _seconds_preci si on is the number of digits in the
fractional part of the SECOND datetime field. Accepted values of
fractional _seconds_precisionare 0to9. The defaultis 6. The
default format is determined explicitly by the
NLS_TIMESTAMP_FORMAT parameter or implicitly by the
NLS_TERRITORY parameter. The size is 7 or 11 bytes, depending
on the precision. This data type contains the datetime fields
YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND. It contains fractional
seconds but does not have a time zone.

181

TIMESTAMP
[(fractional _seconds_precision)]
WITH TIME ZONE

All values of TIMESTAMP as well as time zone displacement value,
where fractional _seconds_preci si on is the number of digits in
the fractional part of the SECOND datetime field. Accepted values
are 0 to 9. The default is 6. The default format is determined
explicitly by the NLS_TIMESTAMP_TZ_FORMAT parameter or
implicitly by the NLS_TERRITORY parameter. The size is fixed at 13
bytes. This data type contains the datetime fields YEAR, MONTH,
DAY, HOUR, MINUTE, SECOND, TIMEZONE_HOUR, and
TIMEZONE_MINUTE. It has fractional seconds and an explicit time
zone.

ORACLE

2-7

Chapter 2
Data Types

Table 2-1 (Cont.) Built-in Data Type Summary

Code

Data Type

Description

231

TIMESTAMP
[(fractional _seconds_precision)]
WITH LOCAL TIME ZONE

All values of TIMESTAMP WITH TIME ZONE, with the following

exceptions:

« Datais normalized to the database time zone when it is
stored in the database.

« When the data is retrieved, users see the data in the session
time zone.

The default format is determined explicitly by the

NLS_TIMESTAMP_FORMAT parameter or implicitly by the

NLS_TERRITORY parameter. The size is 7 or 11 bytes, depending

on the precision.

182

INTERVAL YEAR [(year _preci si on)] TO
MONTH

Stores a period of time in years and months, where

year _preci si on is the number of digits in the YEAR datetime
field. Accepted values are 0 to 9. The default is 2. The size is
fixed at 5 bytes.

183

INTERVAL DAY [(day_pr eci si on)] TO
SECOND
[(fractional _seconds_precision)]

Stores a period of time in days, hours, minutes, and seconds,

where

e day_precision is the maximum number of digits in the DAY
datetime field. Accepted values are 0 to 9. The default is 2.

e fractional _seconds_precision is the number of digits in
the fractional part of the SECOND field. Accepted values are 0
to 9. The default is 6.

The size is fixed at 11 bytes.

23

RAW(si ze)

Raw binary data of length si ze bytes. You must specify si ze for
a RAW value. Maximum si ze is:

e 32767 bytes if MAX_STRING_SIZE = EXTENDED

e 2000 bytes if MAX_STRING_SIZE = STANDARD

Refer to Extended Data Types (page 2-32) for more information
on the MAX_STRING_SIZE initialization parameter.

24

LONG RAW

Raw binary data of variable length up to 2 gigabytes.

69

ROWID

Base 64 string representing the unique address of a row in its
table. This data type is primarily for values returned by the ROWID
pseudocolumn.

208

UROWID [(si ze)]

Base 64 string representing the logical address of a row of an
index-organized table. The optional si ze is the size of a column
of type UROWID. The maximum size and default is 4000 bytes.

96

CHAR [(si ze [BYTE | CHAR])]

Fixed-length character data of length si ze bytes or characters.
Maximum si ze is 2000 bytes or characters. Default and
minimum si ze is 1 byte.

BYTE and CHAR have the same semantics as for VARCHARZ2.

96

NCHAR([(si ze)]

Fixed-length character data of length si ze characters. The
number of bytes can be up to two times si ze for ALL6UTF16
encoding and three times si ze for UTF8 encoding. Maximum

si ze is determined by the national character set definition, with
an upper limit of 2000 bytes. Default and minimum si ze is 1
character.

ORACLE

2-8

Chapter 2
Data Types

Table 2-1 (Cont.) Built-in Data Type Summary

__|]
Code Data Type Description

112 CLOB

A character large object containing single-byte or multibyte
characters. Both fixed-width and variable-width character sets
are supported, both using the database character set. Maximum
size is (4 gigabytes - 1) * (database block size).

112 NCLOB

A character large object containing Unicode characters. Both
fixed-width and variable-width character sets are supported, both
using the database national character set. Maximum size is (4
gigabytes - 1) * (database block size). Stores national character
set data.

113 BLOB

A binary large object. Maximum size is (4 gigabytes - 1) *
(database block size).

114 BFILE

Contains a locator to a large binary file stored outside the
database. Enables byte stream I/O access to external LOBs
residing on the database server. Maximum size is 4 gigabytes.

The sections that follow describe the Oracle data types as they are stored in Oracle
Database. For information on specifying these data types as literals, refer to Literals
(page 2-55).

2.1.1.1 Character Data Types

Character data types store character (alphanumeric) data, which are words and free-
form text, in the database character set or national character set. They are less
restrictive than other data types and consequently have fewer properties. For example,
character columns can store all alphanumeric values, but NUMBER columns can store
only numeric values.

Character data is stored in strings with byte values corresponding to one of the
character sets, such as 7-bit ASCIl or EBCDIC, specified when the database was
created. Oracle Database supports both single-byte and multibyte character sets.

These data types are used for character data:
¢ CHAR Data Type (page 2-9)

* NCHAR Data Type (page 2-10)

« VARCHAR2 Data Type (page 2-11)

« NVARCHAR?2 Data Type (page 2-12)

For information on specifying character data types as literals, refer to Text Literals
(page 2-55).

2.1.1.1.1 CHAR Data Type

ORACLE

The CHAR data type specifies a fixed-length character string in the database character
set. You specify the database character set when you create your database.

When you create a table with a CHAR column, you specify the column length as si ze
optionally followed by a length qualifier. The qualifier BYTE denotes byte length
semantics while the qualifier CHAR denotes character length semantics. In the byte
length semantics, si ze is the number of bytes to store in the column. In the character

2-9

Chapter 2
Data Types

length semantics, si ze is the number of code points in the database character set to
store in the column. A code point may have from 1 to 4 bytes depending on the
database character set and the particular character encoded by the code point. Oracle
recommends that you specify one of the length qualifiers to explicitly document the
desired length semantics of the column. If you do not specify a qualifier, the value of
the NLS_LENGTH_SEMANTICS parameter of the session creating the column defines the
length semantics, unless the table belongs to the schema SYS, in which case the
default semantics is BYTE.

Oracle ensures that all values stored in a CHAR column have the length specified by

si ze in the selected length semantics. If you insert a value that is shorter than the
column length, then Oracle blank-pads the value to column length. If you try to insert a
value that is too long for the column, then Oracle returns an error. Note that if the
column length is expressed in characters (code points), blank-padding does not
guarantee that all column values have the same byte length.

You can omit si ze from the column definition. The default value is 1.

The maximum value of si ze is 2000, which means 2000 bytes or characters (code
points), depending on the selected length semantics. However, independently, the
absolute maximum length of any character value that can be stored into a CHAR column
is 2000 bytes. For example, even if you define the column length to be 2000
characters, Oracle returns an error if you try to insert a 2000-character value in which
one or more code points are wider than 1 byte. The value of si ze in characters is a
length constraint, not guaranteed capacity. If you want a CHAR column to be always
able to store si ze characters in any database character set, use a value of si ze that is
less than or equal to 500.

To ensure proper data conversion between databases and clients with different
character sets, you must ensure that CHAR data consists of well-formed strings.

¢ See Also:

Oracle Database Globalization Support Guide for more information on
character set support and Data Type Comparison Rules (page 2-44) for
information on comparison semantics

2.1.1.1.2 NCHAR Data Type

The NCHAR data type specifies a fixed-length character string in the national character
set. You specify the national character set as either ALI6UTF16 or UTF8 when you
create your database. AL16UTF16 and UTF8 are two encoding forms of the Unicode
character set (UTF-16 and CESU-8, correspondingly) and hence NCHAR is a Unicode-
only data type.

When you create a table with an NCHAR column, you specify the column length as si ze
characters, or more precisely, code points in the national character set. One code
point has always 2 bytes in ALL6UTF16 and from 1 to 3 bytes in UTF8, depending on
the particular character encoded by the code point.

Oracle ensures that all values stored in an NCHAR column have the length of si ze
characters. If you insert a value that is shorter than the column length, then Oracle
blank-pads the value to the column length. If you try to insert a value that is too long
for the column, then Oracle returns an error. Note that if the national character set is

ORACLE 2-10

Chapter 2
Data Types

UTF8, blank-padding does not guarantee that all column values have the same byte
length.

You can omit si ze from the column definition. The default value is 1.

The maximum value of si ze is 1000 characters when the national character set is
AL16UTF16, and 2000 characters when the national character set is UTF8. However,
independently, the absolute maximum length of any character value that can be stored
into an NCHAR column is 2000 bytes. For example, even if you define the column length
to be 1000 characters, Oracle returns an error if you try to insert a 1000-character
value but the national character set is UTF8 and all code points are 3 bytes wide. The
value of si ze is a length constraint, not guaranteed capacity. If you want an NCHAR
column to be always able to store si ze characters in both national character sets, use
a value of si ze that is less than or equal to 666.

To ensure proper data conversion between databases and clients with different
character sets, you must ensure that NCHAR data consists of well-formed strings.

If you assign a CHAR value to an NCHAR column, the value is implicitly converted from the
database character set to the national character set. If you assign an NCHAR value to a
CHAR column, the value is implicitly converted from the national character set to the
database character set. If some of the characters from the NCHAR value cannot be
represented in the database character set, then if the value of the session parameter
NLS_NCHAR_CONV_EXCP is TRUE, then Oracle reports an error. If the value of the parameter
is FALSE, non-representable characters are replaced with the default replacement
character of the database character set, which is usually the question mark '?' or the
inverted question mark '¢".

¢ See Also:

Oracle Database Globalization Support Guide for information on Unicode data
type support

2.1.1.1.3 VARCHARZ2 Data Type

ORACLE

The VARCHAR2 data type specifies a variable-length character string in the database
character set. You specify the database character set when you create your database.

When you create a table with a VARCHAR2 column, you must specify the column length
as si ze optionally followed by a length qualifier. The qualifier BYTE denotes byte length
semantics while the qualifier CHAR denotes character length semantics. In the byte
length semantics, si ze is the maximum number of bytes that can be stored in the
column. In the character length semantics, si ze is the maximum number of code points
in the database character set that can be stored in the column. A code point may have
from 1 to 4 bytes depending on the database character set and the particular character
encoded by the code point. Oracle recommends that you specify one of the length
qualifiers to explicitly document the desired length semantics of the column. If you do
not specify a qualifier, the value of the NLS_LENGTH_SEMANTICS parameter of the session
creating the column defines the length semantics, unless the table belongs to the
schema SYS, in which case the default semantics is BYTE.

Oracle stores a character value in a VARCHAR2 column exactly as you specify it, without
any blank-padding, provided the value does not exceed the length of the column. If
you try to insert a value that exceeds the specified length, then Oracle returns an error.

2-11

Chapter 2
Data Types

The minimum value of si ze is 1. The maximum value is:

« 32767 bytes if MAX_STRING_SIZE = EXTENDED
« 4000 bytes if MAX_STRING_SIZE = STANDARD

Refer to Extended Data Types (page 2-32) for more information on the
MAX_STRING_SIZE initialization parameter and the internal storage mechanisms for
extended data types.

While si ze may be expressed in bytes or characters (code points) the independent
absolute maximum length of any character value that can be stored into a VARCHAR2
column is 32767 or 4000 bytes, depending on MAX_STRING_SIZE. For example, even if
you define the column length to be 32767 characters, Oracle returns an error if you try
to insert a 32767-character value in which one or more code points are wider than 1
byte. The value of si ze in characters is a length constraint, not guaranteed capacity. If
you want a VARCHAR2 column to be always able to store si ze characters in any database
character set, use a value of si ze that is less than or equal to 8191, if MAX_STRING_SIZE
= EXTENDED, or 1000, if MAX_STRING_SIZE = STANDARD.

Oracle compares VARCHARZ values using non-padded comparison semantics.

To ensure proper data conversion between databases with different character sets,
you must ensure that VARCHAR2 data consists of well-formed strings. See Oracle
Database Globalization Support Guide for more information on character set support.

See Also:

Data Type Comparison Rules (page 2-44) for information on comparison
semantics

2.1.1.1.4 VARCHAR Data Type

Do not use the VARCHAR data type. Use the VARCHAR2 data type instead. Although the
VARCHAR data type is currently synonymous with VARCHAR2, the VARCHAR data type is
scheduled to be redefined as a separate data type used for variable-length character
strings compared with different comparison semantics.

2.1.1.1.5 NVARCHAR?2 Data Type

ORACLE

The NVARCHAR2 data type specifies a variable-length character string in the national
character set. You specify the national character set as either ALL6UTF16 or UTF8
when you create your database. ALL6UTF16 and UTF8 are two encoding forms of the
Unicode character set (UTF-16 and CESU-8, correspondingly) and hence NVARCHAR2 is
a Unicode-only data type.

When you create a table with an NVARCHAR2 column, you must specify the column
length as si ze characters, or more precisely, code points in the national character set.
One code point has always 2 bytes in ALI6UTF16 and from 1 to 3 bytes in UTFS8,
depending on the particular character encoded by the code point.

Oracle stores a character value in an NVARCHAR2 column exactly as you specify it,
without any blank-padding, provided the value does not exceed the length of the
column. If you try to insert a value that exceeds the specified length, then Oracle
returns an error.

2-12

Chapter 2
Data Types

The minimum value of si ze is 1. The maximum value is:

e 16383 if MAX_STRING_SIZE = EXTENDED and the national character set is AL16UTF16
e 32767 if MAX_STRING_SIZE = EXTENDED and the national character set is UTF8

e 2000 if MAX_STRING_SIZE = STANDARD and the national character set is ALI16UTF16
e 4000 if MAX_STRING_SIZE = STANDARD and the national character set is UTF8

Refer to Extended Data Types (page 2-32) for more information on the
MAX_STRING_SIZE initialization parameter and the internal storage mechanisms for
extended data types.

Independently of the maximum column length in characters, the absolute maximum
length of any value that can be stored into an NVARCHAR2 column is 32767 or 4000
bytes, depending on MAX_STRING_SIZE. For example, even if you define the column
length to be 16383 characters, Oracle returns an error if you try to insert a 16383-
character value but the national character set is UTF8 and all code points are 3 bytes
wide. The value of si ze is a length constraint, not guaranteed capacity. If you want an
NVARCHAR2 column to be always able to store si ze characters in both national character
sets, use a value of si ze that is less than or equal to 10922, if MAX_STRING_SIZE =
EXTENDED, or 1333, if MAX_STRING_SIZE = STANDARD.

Oracle compares NVARCHAR2 values using nhon-padded comparison semantics.

To ensure proper data conversion between databases and clients with different
character sets, you must ensure that NVARCHAR2 data consists of well-formed strings.

If you assign a VARCHAR2 value to an NVARCHAR2 column, the value is implicitly converted
from the database character set to the national character set. If you assign an
NVARCHAR2 value to a VARCHAR2 column, the value is implicitly converted from the national
character set to the database character set. If some of the characters from the
NVARCHAR2 value cannot be represented in the database character set, then if the value
of the session parameter NLS_NCHAR_CONV_EXCP is TRUE, then Oracle reports an error. If
the value of the parameter is FALSE, non-representable characters are replaced with
the default replacement character of the database character set, which is usually the
guestion mark "?' or the inverted question mark '¢".

See Also:

Oracle Database Globalization Support Guide for information on Unicode data
type support.

2.1.1.2 Numeric Data Types

The Oracle Database numeric data types store positive and negative fixed and
floating-point numbers, zero, infinity, and values that are the undefined result of an
operation—"not a number" or NAN. For information on specifying numeric data types as
literals, refer to Numeric Literals (page 2-57).

2.1.1.2.1 NUMBER Data Type

The NUMBER data type stores zero as well as positive and negative fixed numbers with
absolute values from 1.0 x 107130 to but not including 1.0 x 1025, If you specify an

ORACLE 2-13

ORACLE

Chapter 2
Data Types

arithmetic expression whose value has an absolute value greater than or equal to 1.0
x 10126 then Oracle returns an error. Each NUMBER value requires from 1 to 22 bytes.

Specify a fixed-point number using the following form:

NUMBER(p, S)

where:

e pisthe precision, or the maximum number of significant decimal digits, where the
most significant digit is the left-most nonzero digit, and the least significant digit is
the right-most known digit. Oracle guarantees the portability of numbers with
precision of up to 20 base-100 digits, which is equivalent to 39 or 40 decimal digits
depending on the position of the decimal point.

* s isthe scale, or the number of digits from the decimal point to the least significant
digit. The scale can range from -84 to 127.

— Positive scale is the number of significant digits to the right of the decimal
point to and including the least significant digit.

— Negative scale is the number of significant digits to the left of the decimal
point, to but not including the least significant digit. For negative scale the least
significant digit is on the left side of the decimal point, because the actual data
is rounded to the specified number of places to the left of the decimal point.
For example, a specification of (10,-2) means to round to hundreds.

Scale can be greater than precision, most commonly when e notation is used. When
scale is greater than precision, the precision specifies the maximum number of
significant digits to the right of the decimal point. For example, a column defined as
NUMBER(4,5) requires a zero for the first digit after the decimal point and rounds all
values past the fifth digit after the decimal point.

It is good practice to specify the scale and precision of a fixed-point number column for
extra integrity checking on input. Specifying scale and precision does not force all
values to a fixed length. If a value exceeds the precision, then Oracle returns an error.
If a value exceeds the scale, then Oracle rounds it.

Specify an integer using the following form:

NUMBER(p)

This represents a fixed-point number with precision p and scale 0 and is equivalent to
NUMBER(p,0).

Specify a floating-point number using the following form:

NUMBER

The absence of precision and scale designators specifies the maximum range and
precision for an Oracle number.

See Also:

Floating-Point Numbers (page 2-16)

Table 2-2 (page 2-15) show how Oracle stores data using different precisions and
scales.

2-14

Table 2-2 Storage of Scale and Precision

Chapter 2
Data Types

Actual Data Specified As Stored As

123.89 NUMBER 123.89

123.89 NUMBER(3) 124

123.89 NUMBER(3,2) exceeds precision

123.89 NUMBER(4,2) exceeds precision

123.89 NUMBER(5,2) 123.89

123.89 NUMBER(6,1) 123.9

123.89 NUMBER(6,-2) 100

.01234 NUMBER(4,5) .01234

.00012 NUMBER(4,5) .00012

.000127 NUMBER(4,5) .00013

.0000012 NUMBER(2,7) .0000012

.00000123 NUMBER(2,7) .0000012

1.2e-4 NUMBER(2,5) 0.00012

1.2e-5 NUMBER(2,5) 0.00001
2.1.1.2.2 FLOAT Data Type

ORACLE

The FLOAT data type is a subtype of NUMBER. It can be specified with or without precision,
which has the same definition it has for NUMBER and can range from 1 to 126. Scale
cannot be specified, but is interpreted from the data. Each FLOAT value requires from 1
to 22 bytes.

To convert from binary to decimal precision, multiply n by 0.30103. To convert from
decimal to binary precision, multiply the decimal precision by 3.32193. The maximum
of 126 digits of binary precision is roughly equivalent to 38 digits of decimal precision.

The difference between NUMBER and FLOAT is best illustrated by example. In the
following example the same values are inserted into NUMBER and FLOAT columns:

CREATE TABLE test (coll NUMBER(5,2), col2 FLOAT(5));

INSERT INTO test VALUES (1.23, 1.23);
INSERT INTO test VALUES (7.89, 7.89);
INSERT INTO test VALUES (12.79, 12.79);
INSERT INTO test VALUES (123.45, 123.45);

SELECT * FROM test;

coL1 coL2
1.23 1.2
7.89 7.9
12.79 13
123.45 120

In this example, the FLOAT value returned cannot exceed 5 binary digits. The largest
decimal number that can be represented by 5 binary digits is 31. The last row contains

2-15

Chapter 2
Data Types

decimal values that exceed 31. Therefore, the FLOAT value must be truncated so that its
significant digits do not require more than 5 binary digits. Thus 123.45 is rounded to
120, which has only two significant decimal digits, requiring only 4 binary digits.

Oracle Database uses the Oracle FLOAT data type internally when converting ANSI
FLOAT data. Oracle FLOAT is available for you to use, but Oracle recommends that you
use the BINARY_FLOAT and BINARY_DOUBLE data types instead, as they are more robust.
Refer to Floating-Point Numbers (page 2-16) for more information.

2.1.1.2.3 Floating-Point Numbers

Floating-point numbers can have a decimal point anywhere from the first to the last
digit or can have no decimal point at all. An exponent may optionally be used following
the number to increase the range, for example, 1.777 €20, A scale value is not
applicable to floating-point numbers, because the number of digits that can appear
after the decimal point is not restricted.

Binary floating-point numbers differ from NUMBER in the way the values are stored
internally by Oracle Database. Values are stored using decimal precision for NUMBER. All
literals that are within the range and precision supported by NUMBER are stored exactly
as NUMBER. Literals are stored exactly because literals are expressed using decimal
precision (the digits 0 through 9). Binary floating-point numbers are stored using binary
precision (the digits 0 and 1). Such a storage scheme cannot represent all values
using decimal precision exactly. Frequently, the error that occurs when converting a
value from decimal to binary precision is undone when the value is converted back
from binary to decimal precision. The literal 0.1 is such an example.

Oracle Database provides two numeric data types exclusively for floating-point
numbers:

2.1.1.2.3.1 BINARY_FLOAT

BINARY_FLOAT is a 32-bit, single-precision floating-point number data type. Each
BINARY_FLOAT value requires 4 bytes.

2.1.1.2.3.2 BINARY_DOUBLE

BINARY_DOUBLE is a 64-bit, double-precision floating-point number data type. Each
BINARY_DOUBLE value requires 8 bytes.

In a NUMBER column, floating point numbers have decimal precision. In a BINARY_FLOAT or
BINARY_DOUBLE column, floating-point numbers have binary precision. The binary
floating-point numbers support the special values infinity and NaN (not a number).

You can specify floating-point numbers within the limits listed in Table 2-3
(page 2-16). The format for specifying floating-point numbers is defined in Numeric
Literals (page 2-57).

Table 2-3 Floating Point Number Limits

Value BINARY_FLOAT BINARY_DOUBLE
Maximum positive finite value 3.40282E+38F 1.79769313486231E+308
Minimum positive finite value 1.17549E-38F 2.22507485850720E-308

ORACLE 2-16

Chapter 2
Data Types

2.1.1.2.3.3 IEEE754 Conformance

The Oracle implementation of floating-point data types conforms substantially with the
Institute of Electrical and Electronics Engineers (IEEE) Standard for Binary Floating-
Point Arithmetic, IEEE Standard 754-1985 (IEEE754). The floating-point data types
conform to IEEE754 in the following areas:

The SQL function SQRT implements square root. See SQRT (page 7-308).

The SQL function REMAINDER implements remainder. See REMAINDER
(page 7-293).

Arithmetic operators conform. See Arithmetic Operators (page 4-2).

Comparison operators conform, except for comparisons with NaN. Oracle orders
NaN greatest with respect to all other values, and evaluates NaN equal to NaN. See
Floating-Point Conditions (page 6-8).

Conversion operators conform. See Conversion Functions (page 7-7).
The default rounding mode is supported.
The default exception handling mode is supported.

The special values INF, -INF, and NaN are supported. See Floating-Point Conditions
(page 6-8).

Rounding of BINARY_FLOAT and BINARY_DOUBLE values to integer-valued BINARY_FLOAT
and BINARY_DOUBLE values is provided by the SQL functions ROUND, TRUNC, CEIL, and
FLOOR.

Rounding of BINARY_FLOAT/BINARY_DOUBLE to decimal and decimal to BINARY_FLOAT/
BINARY_DOUBLE is provided by the SQL functions TO_CHAR, TO_NUMBER, TO_NCHAR,
TO_BINARY_FLOAT, TO_BINARY_DOUBLE, and CAST.

The floating-point data types do not conform to IEEE754 in the following areas:

-0 is coerced to +O0.

Comparison with NaN is not supported.

All NaN values are coerced to either BINARY_FLOAT_NAN or BINARY_DOUBLE_NAN.
Non-default rounding modes are not supported.

Non-default exception handling mode are not supported.

2.1.1.2.4 Numeric Precedence

ORACLE

Numeric precedence determines, for operations that support numeric data types, the
data type Oracle uses if the arguments to the operation have different data types.
BINARY_DOUBLE has the highest numeric precedence, followed by BINARY_FLOAT, and
finally by NUMBER. Therefore, in any operation on multiple numeric values:

If any of the operands is BINARY_DOUBLE, then Oracle attempts to convert all the
operands implicitly to BINARY_DOUBLE before performing the operation.

If none of the operands is BINARY_DOUBLE but any of the operands is BINARY_FLOAT,
then Oracle attempts to convert all the operands implicitly to BINARY_FLOAT before
performing the operation.

Otherwise, Oracle attempts to convert all the operands to NUMBER before performing
the operation.

2-17

Chapter 2
Data Types

If any implicit conversion is needed and fails, then the operation fails. Refer to
Table 2-8 (page 2-49) for more information on implicit conversion.

In the context of other data types, numeric data types have lower precedence than the
datetime/interval data types and higher precedence than character and all other data

types.

2.1.1.3 LONG Data Type

ORACLE

Do not create tables with LONG columns. Use LOB columns (CLOB, NCLOB, BLOB) instead.
LONG columns are supported only for backward compatibility.

LONG columns store variable-length character strings containing up to 2 gigabytes -1, or
231-1 bytes. LONG columns have many of the characteristics of VARCHAR2 columns. You
can use LONG columns to store long text strings. The length of LONG values may be
limited by the memory available on your computer. LONG literals are formed as
described for Text Literals (page 2-55).

Oracle also recommends that you convert existing LONG columns to LOB columns. LOB
columns are subject to far fewer restrictions than LONG columns. Further, LOB
functionality is enhanced in every release, whereas LONG functionality has been static
for several releases. See the nodi fy_col _properties clause of ALTER TABLE

(page 12-29) and TO_LOB (page 7-369) for more information on converting LONG
columns to LOB.

You can reference LONG columns in SQL statements in these places:

. SELECT lists
e SET clauses of UPDATE statements
e VALUES clauses of INSERT statements

The use of LONG values is subject to these restrictions:

e Atable can contain only one LONG column.
* You cannot create an object type with a LONG attribute.

e LONG columns cannot appear in WHERE clauses or in integrity constraints (except that
they can appear in NULL and NOT NULL constraints).

e LONG columns cannot be indexed.
* LONG data cannot be specified in regular expressions.
e A stored function cannot return a LONG value.

* You can declare a variable or argument of a PL/SQL program unit using the LONG
data type. However, you cannot then call the program unit from SQL.

* Within a single SQL statement, all LONG columns, updated tables, and locked tables
must be located on the same database.

e LONG and LONG RAW columns cannot be used in distributed SQL statements and
cannot be replicated.

» If a table has both LONG and LOB columns, then you cannot bind more than 4000
bytes of data to both the LONG and LOB columns in the same SQL statement.
However, you can bind more than 4000 bytes of data to either the LONG or the LOB
column.

In addition, LONG columns cannot appear in these parts of SQL statements:

2-18

Chapter 2
Data Types

e GROUP BY clauses, ORDER BY clauses, or CONNECT BY clauses or with the DISTINCT
operator in SELECT statements

e The UNIQUE operator of a SELECT statement

e The column list of a CREATE CLUSTER statement

e The CLUSTER clause of a CREATE MATERIALIZED VIEW statement
e SQL built-in functions, expressions, or conditions

e SELECT lists of queries containing GROUP BY clauses

e SELECT lists of subqueries or queries combined by the UNION, INTERSECT, or MINUS set
operators

e SELECT lists of CREATE TABLE ... AS SELECT statements
e ALTER TABLE ... MOVE statements
e SELECT lists in subqueries in INSERT statements

Triggers can use the LONG data type in the following manner:

A SQL statement within a trigger can insert data into a LONG column.

» If data from a LONG column can be converted to a constrained data type (such as
CHAR and VARCHAR2), then a LONG column can be referenced in a SQL statement
within a trigger.

» Variables in triggers cannot be declared using the LONG data type.
* NEW and :0LD cannot be used with LONG columns.

You can use Oracle Call Interface functions to retrieve a portion of a LONG value from
the database.

¢ See Also:

Oracle Call Interface Programmer's Guide

2.1.1.4 Datetime and Interval Data Types

ORACLE

The datetime data types are DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, and TIMESTAMP
WITH LOCAL TIME ZONE. Values of datetime data types are sometimes called datetimes.
The interval data types are INTERVAL YEAR TO MONTH and INTERVAL DAY TO SECOND. Values of
interval data types are sometimes called intervals. For information on expressing
datetime and interval values as literals, refer to Datetime Literals (page 2-60) and
Interval Literals (page 2-64).

Both datetimes and intervals are made up of fields. The values of these fields
determine the value of the data type. Table 2-4 (page 2-20) lists the datetime fields
and their possible values for datetimes and intervals.

To avoid unexpected results in your DML operations on datetime data, you can verify
the database and session time zones by querying the built-in SQL functions DBTIMEZONE
and SESSIONTIMEZONE. If the time zones have not been set manually, then Oracle
Database uses the operating system time zone by default. If the operating system time
zone is not a valid Oracle time zone, then Oracle uses UTC as the default value.

2-19

Table 2-4 Datetime Fields and Values

Datetime Field

Valid Values for Datetime

Chapter 2
Data Types

Valid Values for INTERVAL

YEAR -4712 to 9999 (excluding year 0) Any positive or negative
integer

MONTH 0lto12 Oto11

DAY 01 to 31 (limited by the values of MONTH and YEAR, Any positive or negative
according to the rules of the current NLS calendar integer
parameter)

HOUR 00 to 23 0to 23

MINUTE 00 to 59 0to 59

SECOND 00 to 59.9(n), where 9(n) is the precision of time 0 to 59.9(n), where 9(n) is the

fractional seconds. The 9(n) portion is not applicable

for DATE.

precision of interval fractional
seconds

TIMEZONE_HOUR

-12 to 14 (This range accommodates daylight saving
time changes.) Not applicable for DATE or TIMESTAMP.

Not applicable

TIMEZONE_MINUTE
(See note at end of table)

00 to 59. Not applicable for DATE or TIMESTAMP.

Not applicable

TIMEZONE_REGION

Query the TZNAME column of the VSTIMEZONE_NAMES
data dictionary view. Not applicable for DATE or
TIMESTAMP. For a complete listing of all time zone
region names, refer to Oracle Database

Globalization Support Guide.

Not applicable

TIMEZONE_ABBR

Query the TZABBREV column of the
V$TIMEZONE_NAMES data dictionary view. Not
applicable for DATE or TIMESTAMP.

Not applicable

Note:

2.1.1.4.1 DATE Data Type

The DATE data type stores date and time information. Although date and time
information can be represented in both character and number data types, the DATE data
type has special associated properties. For each DATE value, Oracle stores the
following information: year, month, day, hour, minute, and second.

TIMEZONE_HOUR and TIMEZONE_MINUTE are specified together and interpreted as
an entity in the format +|- hh:ni , with values ranging from -12:59 to +14:00.
Refer to Oracle Data Provider for .NET Developer's Guide for Microsoft
Windows for information on specifying time zone values for that API.

You can specify a DATE value as a literal, or you can convert a character or numeric
value to a date value with the TO_DATE function. For examples of expressing DATE
values in both these ways, refer to Datetime Literals (page 2-60).

ORACLE

2-20

Chapter 2
Data Types

2.1.1.4.1.1 Using Julian Days

A Julian day number is the number of days since January 1, 4712 BC. Julian days
allow continuous dating from a common reference. You can use the date format model
"J" with date functions TO_DATE and TO_CHAR to convert between Oracle DATE values and
their Julian equivalents.

Note:

Oracle Database uses the astronomical system of calculating Julian days, in
which the year 4713 BC is specified as -4712. The historical system of
calculating Julian days, in contrast, specifies 4713 BC as -4713. If you are
comparing Oracle Julian days with values calculated using the historical
system, then take care to allow for the 365-day difference in BC dates. For
more information, see http://aa.usno.navy.mil/fag/docs/millennium.php.

The default date values are determined as follows:

e The year is the current year, as returned by SYSDATE.

e The month is the current month, as returned by SYSDATE.
e The day is 01 (the first day of the month).

* The hour, minute, and second are all 0.

These default values are used in a query that requests date values where the date
itself is not specified, as in the following example, which is issued in the month of May:

SELECT TO_DATE("2009", "YYYY")
FROM DUAL;

TO_DATE("

01-MAY-09

Example
This statement returns the Julian equivalent of January 1, 2009:

SELECT TO_CHAR(TO_DATE("01-01-2009", *MM-DD-YYYY"),*J")
FROM DUAL;

TO_CHAR

2454833

See Also:

Selecting from the DUAL Table (page 9-18) for a description of the DUAL table

ORACLE 2-21

http://aa.usno.navy.mil/faq/docs/millennium.php

Chapter 2
Data Types

2.1.1.4.2 TIMESTAMP Data Type

The TIMESTAMP data type is an extension of the DATE data type. It stores the year,
month, and day of the DATE data type, plus hour, minute, and second values. This data
type is useful for storing precise time values and for collecting and evaluating date
information across geographic regions. Specify the TIMESTAMP data type as follows:

TIMESTAMP [(fractional _seconds_precision)]

where fractional _seconds_pr eci si on optionally specifies the number of digits Oracle
stores in the fractional part of the SECOND datetime field. When you create a column of
this data type, the value can be a number in the range 0 to 9. The default is 6.

See Also:

TO_TIMESTAMP (page 7-376) for information on converting character data to
TIMESTAMP data

2.1.1.4.3 TIMESTAMP WITH TIME ZONE Data Type

ORACLE

TIMESTAMP WITH TIME ZONE is a variant of TIMESTAMP that includes a time zone region
name or a time zone offset in its value. The time zone offset is the difference (in
hours and minutes) between local time and UTC (Coordinated Universal Time—
formerly Greenwich Mean Time). This data type is useful for preserving local time
zone information.

Specify the TIMESTAMP WITH TIME ZONE data type as follows:

TIMESTAMP [(fractional _seconds_precision)] WITH TIME ZONE

where fractional _seconds_preci si on optionally specifies the number of digits Oracle
stores in the fractional part of the SECOND datetime field. When you create a column of
this data type, the value can be a number in the range 0 to 9. The default is 6.

Oracle time zone data is derived from the public domain information available at
http://www.iana.org/time-zones/. Oracle time zone data may not reflect the most
recent data available at this site.

See Also:

* Oracle Database Globalization Support Guide for more information on
Oracle time zone data

e Support for Daylight Saving Times (page 2-26) and Table 2-19
(page 2-81) for information on daylight saving support

e TO_TIMESTAMP_TZ (page 7-377) for information on converting character
data to TIMESTAMP WITH TIME ZONE data

* ALTER SESSION (page 11-86) for information on the
ERROR_ON_OVERLAP_TIME session parameter

2-22

http://www.iana.org/time-zones/

Chapter 2
Data Types

2.1.1.4.4 TIMESTAMP WITH LOCAL TIME ZONE Data Type

TIMESTAMP WITH LOCAL TIME ZONE is another variant of TIMESTAMP that is sensitive to time
zone information. It differs from TIMESTAMP WITH TIME ZONE in that data stored in the
database is normalized to the database time zone, and the time zone information is
not stored as part of the column data. When a user retrieves the data, Oracle returns it
in the user's local session time zone. This data type is useful for date information that
is always to be displayed in the time zone of the client system in a two-tier application.

Specify the TIMESTAMP WITH LOCAL TIME ZONE data type as follows:

TIMESTAMP [(fractional _seconds_precision)] WITH LOCAL TIME ZONE

where fractional _seconds_pr eci si on optionally specifies the number of digits Oracle
stores in the fractional part of the SECOND datetime field. When you create a column of
this data type, the value can be a number in the range 0 to 9. The default is 6.

Oracle time zone data is derived from the public domain information available at
http://www.iana.org/time-zones/. Oracle time zone data may not reflect the most
recent data available at this site.

See Also:

* Oracle Database Globalization Support Guide for more information on
Oracle time zone data

* Oracle Database Development Guide for examples of using this data type
and CAST (page 7-50) for information on converting character data to
TIMESTAMP WITH LOCAL TIME ZONE

2.1.1.4.5 INTERVAL YEAR TO MONTH Data Type

INTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH datetime fields.
This data type is useful for representing the difference between two datetime values
when only the year and month values are significant.

Specify INTERVAL YEAR TO MONTH as follows:

INTERVAL YEAR [(year _precision)] TO MONTH

where year _preci si on is the number of digits in the YEAR datetime field. The default
value of year _precisionis 2.

You have a great deal of flexibility when specifying interval values as literals. Refer to
Interval Literals (page 2-64) for detailed information on specifying interval values as
literals. Also see Datetime and Interval Examples (page 2-27) for an example using
intervals.

2.1.1.4.6 INTERVAL DAY TO SECOND Data Type

INTERVAL DAY TO SECOND stores a period of time in terms of days, hours, minutes, and
seconds. This data type is useful for representing the precise difference between two
datetime values.

ORACLE 2-23

http://www.iana.org/time-zones/

Chapter 2
Data Types

Specify this data type as follows:

INTERVAL DAY [(day_precision)]
TO SECOND [(fractional _seconds_preci sion)]

where

e day_precision is the number of digits in the DAY datetime field. Accepted values are
0to 9. The default is 2.

e fractional _seconds_precision is the number of digits in the fractional part of the
SECOND datetime field. Accepted values are 0 to 9. The default is 6.

You have a great deal of flexibility when specifying interval values as literals. Refer to
Interval Literals (page 2-64) for detailed information on specify interval values as
literals. Also see Datetime and Interval Examples (page 2-27) for an example using
intervals.

2.1.1.4.7 Datetime/Interval Arithmetic

ORACLE

You can perform a number of arithmetic operations on date (DATE), timestamp
(TIMESTAMP, TIMESTAMP WITH TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE) and interval
(INTERVAL DAY TO SECOND and INTERVAL YEAR TO MONTH) data. Oracle calculates the results
based on the following rules:

* You can use NUMBER constants in arithmetic operations on date and timestamp
values, but not interval values. Oracle internally converts timestamp values to date
values and interprets NUMBER constants in arithmetic datetime and interval
expressions as numbers of days. For example, SYSDATE + 1 is tomorrow. SYSDATE -
7 is one week ago. SYSDATE + (10/1440) is ten minutes from now. Subtracting the
hire_date column of the sample table employees from SYSDATE returns the number of
days since each employee was hired. You cannot multiply or divide date or
timestamp values.

» Oracle implicitly converts BINARY_FLOAT and BINARY_DOUBLE operands to NUMBER.

e Each DATE value contains a time component, and the result of many date
operations include a fraction. This fraction means a portion of one day. For
example, 1.5 days is 36 hours. These fractions are also returned by Oracle built-in
functions for common operations on DATE data. For example, the MONTHS_BETWEEN
function returns the number of months between two dates. The fractional portion of
the result represents that portion of a 31-day month.

e If one operand is a DATE value or a numeric value, neither of which contains time
zone or fractional seconds components, then:

— Oracle implicitly converts the other operand to DATE data. The exception is
multiplication of a numeric value times an interval, which returns an interval.

— If the other operand has a time zone value, then Oracle uses the session time
zone in the returned value.

— If the other operand has a fractional seconds value, then the fractional
seconds value is lost.

e When you pass a timestamp, interval, or numeric value to a built-in function that
was designed only for the DATE data type, Oracle implicitly converts the non-DATE
value to a DATE value. Refer to Datetime Functions (page 7-6) for information on
which functions cause implicit conversion to DATE.

2-24

ORACLE

Chapter 2
Data Types

When interval calculations return a datetime value, the result must be an actual
datetime value or the database returns an error. For example, the next two
statements return errors:

SELECT TO_DATE("31-AUG-2004","DD-MON-YYYY*") + TO_YMINTERVAL("0-1")
FROM DUAL;

SELECT TO_DATE("29-FEB-2004", "DD-MON-YYYY") + TO_YMINTERVAL("1-0")
FROM DUAL;

The first fails because adding one month to a 31-day month would result in
September 31, which is not a valid date. The second fails because adding one
year to a date that exists only every four years is not valid. However, the next
statement succeeds, because adding four years to a February 29 date is valid:

SELECT TO_DATE("29-FEB-2004", "DD-MON-YYYY") + TO_YMINTERVAL("4-0")
FROM DUAL;

TO_DATE("

29-FEB-08

Oracle performs all timestamp arithmetic in UTC time. For TIMESTAMP WITH LOCAL
TIME ZONE, Oracle converts the datetime value from the database time zone to UTC
and converts back to the database time zone after performing the arithmetic. For
TIMESTAMP WITH TIME ZONE, the datetime value is always in UTC, so no conversion is
necessary.

Table 2-5 (page 2-25) is a matrix of datetime arithmetic operations. Dashes represent
operations that are not supported.

Table 2-5 Matrix of Datetime Arithmetic
]

Operand & Operator DATE TIMESTAMP INTERVAL Numeric
DATE

+ - - DATE DATE

- NUMBER INTERVAL DATE DATE

* — — — —

/ - - - -
TIMESTAMP

+ - - TIMESTAMP DATE

- INTERVAL INTERVAL TIMESTAMP DATE

* — — — —

/ — — — —
INTERVAL

+ DATE TIMESTAMP INTERVAL -

- - - INTERVAL -

* - - - INTERVAL
/ - - - INTERVAL
Numeric

2-25

Chapter 2
Data Types

Table 2-5 (Cont.) Matrix of Datetime Arithmetic
|

Operand & Operator DATE TIMESTAMP INTERVAL Numeric
+ DATE DATE - NA

- - - - NA

* - - INTERVAL NA

/ _ - - NA
Examples

You can add an interval value expression to a start time. Consider the sample table
oe.orders with a column order_date. The following statement adds 30 days to the value
of the order_date column:;

SELECT order_id, order_date + INTERVAL "30" DAY AS "Due Date"
FROM orders
ORDER BY order_id, "Due Date";

2.1.1.4.8 Support for Daylight Saving Times

Oracle Database automatically determines, for any given time zone region, whether
daylight saving is in effect and returns local time values accordingly. The datetime
value is sufficient for Oracle to determine whether daylight saving time is in effect for a
given region in all cases except boundary cases. A boundary case occurs during the
period when daylight saving goes into or comes out of effect. For example, in the US-
Pacific region, when daylight saving goes into effect, the time changes from 2:00 a.m.
to 3:00 a.m. The one hour interval between 2 and 3 a.m. does not exist. When daylight
saving goes out of effect, the time changes from 2:00 a.m. back to 1:00 a.m., and the
one-hour interval between 1 and 2 a.m. is repeated.

To resolve these boundary cases, Oracle uses the TZR and TzD format elements, as
described in Table 2-19 (page 2-81). TZR represents the time zone region name in
datetime input strings. Examples are 'Australia/North', 'UTC', and 'Singapore'. TZD
represents an abbreviated form of the time zone region name with daylight saving
information. Examples are 'PST' for US/Pacific standard time and 'PDT' for US/Pacific
daylight time. To see a listing of valid values for the TzR and TzD format elements,
query the TZNAME and TZABBREV columns of the V$TIMEZONE_NAMES dynamic performance
view.

Note:

Time zone region names are needed by the daylight saving feature. These
names are stored in two types of time zone files: one large and one small. One
of these files is the default file, depending on your environment and the
release of Oracle Database you are using. For more information regarding
time zone files and names, see Oracle Database Globalization Support Guide.

For a complete listing of the time zone region names in both files, refer to Oracle
Database Globalization Support Guide.

ORACLE 2-26

Chapter 2
Data Types

Oracle time zone data is derived from the public domain information available at
http://www.iana.org/time-zones/. Oracle time zone data may not reflect the most
recent data available at this site.

See Also:

» Datetime Format Models (page 2-71) for information on the format
elements and the session parameter ERROR_ON_OVERLAP_TIME
(page 11-96).

* Oracle Database Globalization Support Guide for more information on
Oracle time zone data

* Oracle Database Reference for information on the dynamic performance
views

2.1.1.4.9 Datetime and Interval Examples

ORACLE

The following example shows how to specify some datetime and interval data types.

CREATE TABLE time_table
(start_time TIMESTAMP,
duration_1 INTERVAL DAY (6) TO SECOND (5),
duration_2 INTERVAL YEAR TO MONTH);

The start_time column is of type TIMESTAMP. The implicit fractional seconds precision of
TIMESTAMP is 6.

The duration_1 column is of type INTERVAL DAY TO SECOND. The maximum number of
digits in field DAY is 6 and the maximum number of digits in the fractional second is 5.
The maximum number of digits in all other datetime fields is 2.

The duration_2 column is of type INTERVAL YEAR TO MONTH. The maximum number of
digits of the value in each field (YEAR and MONTH) is 2.

Interval data types do not have format models. Therefore, to adjust their presentation,
you must combine character functions such as EXTRACT and concatenate the
components. For example, the following examples query the hr.employees and
oe.orders tables, respectively, and change interval output from the form "yy-mm" to "yy
years mm months" and from "dd-hh" to "dddd days hh hours":

SELECT last_name, EXTRACT(YEAR FROM (SYSDATE - hire_date) YEAR TO MONTH)
|| © years *
|| EXTRACT(MONTH FROM (SYSDATE - hire_date) YEAR TO MONTH)
Il © months®™ "lInterval”
FROM employees;

LAST_NAME Interval

OConnell 2 years 3 months
Grant 1 years 9 months
Whalen 6 years 1 months
Hartstein 5 years 8 months
Fay 4 years 2 months
Mavris 7 years 4 months
Baer 7 years 4 months

2-27

http://www.iana.org/time-zones/

Chapter 2
Data Types

Higgins 7 years 4 months
Gietz 7 years 4 months

SELECT order_id, EXTRACT(DAY FROM (SYSDATE - order_date) DAY TO SECOND)
Il ° days *
|| EXTRACT(HOUR FROM (SYSDATE - order_date) DAY TO SECOND)
Il * hours® "Interval"
FROM orders;

ORDER_ID Interval
2458 780 days 23 hours
2397 685 days 22 hours
2454 733 days 21 hours
2354 447 days 20 hours
2358 635 days 20 hours
2381 508 days 18 hours
2440 765 days 17 hours
2357 1365 days 16 hours
2394 602 days 15 hours
2435 763 days 15 hours

2.1.1.5 RAW and LONG RAW Data Types

ORACLE

The RAW and LONG RAW data types store data that is not to be explicitly converted by
Oracle Database when moving data between different systems. These data types are
intended for binary data or byte strings. For example, you can use LONG RAW to store
graphics, sound, documents, or arrays of binary data, for which the interpretation is
dependent on the use.

Oracle strongly recommends that you convert LONG RAW columns to binary LOB (BLOB)
columns. LOB columns are subject to far fewer restrictions than LONG columns. See
TO_LOB (page 7-369) for more information.

RAW is a variable-length data type like VARCHAR2, except that Oracle Net (which connects
client software to a database or one database to another) and the Oracle import and
export utilities do not perform character conversion when transmitting RAW or LONG RAW
data. In contrast, Oracle Net and the Oracle import and export utilities automatically
convert CHAR, VARCHAR2, and LONG data between different database character sets, if
data is transported between databases, or between the database character set and
the client character set, if data is transported between a database and a client. The
client character set is determined by the type of the client interface, such as OCI or
JDBC, and the client configuration (for example, the NLS_LANG environment variable).

When Oracle implicitly converts RAW or LONG RAW data to character data, the resulting
character value contains a hexadecimal representation of the binary input, where each
character is a hexadecimal digit (0-9, A-F) representing four consecutive bits of RAW
data. For example, one byte of RAW data with bits 11001011 becomes the value CB.

When Oracle implicitly converts character data to RAW or LONG RAW, it interprets each
consecutive input character as a hexadecimal representation of four consecutive bits
of binary data and builds the resulting RAW or LONG RAW value by concatenating those
bits. If any of the input characters is not a hexadecimal digit (0-9, A-F, a-f), then an error
is reported. If the number of characters is odd, then the result is undefined.

The SQL functions RAWTOHEX and HEXTORAW perform explicit conversions that are
equivalent to the above implicit conversions. Other types of conversions between RAW

2-28

Chapter 2
Data Types

and character data are possible with functions in the Oracle-supplied PL/SQL
packages UTL_RAW and UTL_I118N.

2.1.1.6 Large Object (LOB) Data Types

ORACLE

The built-in LOB data types BLOB, CLOB, and NCLOB (stored internally) and BFILE (stored
externally) can store large and unstructured data such as text, image, video, and
spatial data. The size of BLOB, CLOB, and NCLOB data can be up to (232-1 bytes) * (the
value of the CHUNK parameter of LOB storage). If the tablespaces in your database are
of standard block size, and if you have used the default value of the CHUNK parameter of
LOB storage when creating a LOB column, then this is equivalent to (232-1 bytes) *
(database block size). BFILE data can be up to 264-1 bytes, although your operating
system may impose restrictions on this maximum.

When creating a table, you can optionally specify different tablespace and storage
characteristics for LOB columns or LOB object attributes from those specified for the
table.

CLOB, NCLOB, and BLOB values up to approximately 4000 bytes are stored inline if you
enable storage in row at the time the LOB column is created. LOBs greater than 4000
bytes are always stored externally. Refer to ENABLE STORAGE IN ROW

(page 15-86) for more information.

LOB columns contain LOB locators that can refer to internal (in the database) or
external (outside the database) LOB values. Selecting a LOB from a table actually
returns the LOB locator and not the entire LOB value. The DBMS_LOB package and
Oracle Call Interface (OCI) operations on LOBs are performed through these locators.

LOBs are similar to LONG and LONG RAW types, but differ in the following ways:

e LOBs can be attributes of an object type (user-defined data type).

e The LOB locator is stored in the table column, either with or without the actual
LOB value. BLOB, NCLOB, and CLOB values can be stored in separate tablespaces.
BFILE data is stored in an external file on the server.

* When you access a LOB column, the locator is returned.

+ A LOB can be up to (232-1 bytes)*(database block size) in size. BFILE data can be
up to 2%4-1 bytes, although your operating system may impose restrictions on this
maximum.

* LOBs permit efficient, random, piece-wise access to and manipulation of data.
* You can define more than one LOB column in a table.

* With the exception of NCLOB, you can define one or more LOB attributes in an
object.

* You can declare LOB bind variables.
* You can select LOB columns and LOB attributes.

e You can insert a new row or update an existing row that contains one or more LOB
columns or an object with one or more LOB attributes. In update operations, you
can set the internal LOB value to NULL, empty, or replace the entire LOB with data.
You can set the BFILE to NULL or make it point to a different file.

e You can update a LOB row-column intersection or a LOB attribute with another
LOB row-column intersection or LOB attribute.

2-29

Chapter 2
Data Types

* You can delete a row containing a LOB column or LOB attribute and thereby also
delete the LOB value. For BFILEs, the actual operating system file is not deleted.

You can access and populate rows of an inline LOB column (a LOB column stored in
the database) or a LOB attribute (an attribute of an object type column stored in the
database) simply by issuing an INSERT or UPDATE statement.

Restrictions on LOB Columns

LOB columns are subject to a number of rules and restrictions. See Oracle Database
SecureFiles and Large Objects Developer's Guide for a complete listing.

¢ See Also:

e Oracle Database PL/SQL Packages and Types Reference and Oracle Call
Interface Programmer's Guide for more information about these interfaces
and LOBs

e thenodify_col _properties clause of ALTER TABLE (page 12-29) and
TO_LOB (page 7-369) for more information on converting LONG columns to
LOB columns

2.1.1.6.1 BFILE Data Type

ORACLE

The BFILE data type enables access to binary file LOBs that are stored in file systems
outside Oracle Database. A BFILE column or attribute stores a BFILE locator, which
serves as a pointer to a binary file on the server file system. The locator maintains the
directory name and the filename.

You can change the filename and path of a BFILE without affecting the base table by
using the BFILENAME function. Refer to BFILENAME (page 7-46) for more information
on this built-in SQL function.

Binary file LOBs do not participate in transactions and are not recoverable. Rather, the
underlying operating system provides file integrity and durability. BFILE data can be up
to 264-1 bytes, although your operating system may impose restrictions on this
maximum.

The database administrator must ensure that the external file exists and that Oracle
processes have operating system read permissions on the file.

The BFILE data type enables read-only support of large binary files. You cannot modify
or replicate such a file. Oracle provides APls to access file data. The primary
interfaces that you use to access file data are the DBMS_LOB package and Oracle Call
Interface (OCI).

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide and
Oracle Call Interface Programmer's Guide for more information about LOBs
and CREATE DIRECTORY (page 13-80)

2-30

Chapter 2
Data Types

2.1.1.6.2 BLOB Data Type

The BLOB data type stores unstructured binary large objects. BLOB objects can be
thought of as bitstreams with no character set semantics. BLOB objects can store binary
data up to (4 gigabytes -1) * (the value of the CHUNK parameter of LOB storage). If the
tablespaces in your database are of standard block size, and if you have used the
default value of the CHUNK parameter of LOB storage when creating a LOB column,
then this is equivalent to (4 gigabytes - 1) * (database block size).

BLOB objects have full transactional support. Changes made through SQL, the DBMS_LOB
package, or Oracle Call Interface (OCI) participate fully in the transaction. BLOB value
manipulations can be committed and rolled back. However, you cannot save a BLOB
locator in a PL/SQL or OCI variable in one transaction and then use it in another
transaction or session.

2.1.1.6.3 CLOB Data Type

The CLOB data type stores single-byte and multibyte character data. Both fixed-width
and variable-width character sets are supported, and both use the database character
set. CLOB objects can store up to (4 gigabytes -1) * (the value of the CHUNK parameter of
LOB storage) of character data. If the tablespaces in your database are of standard
block size, and if you have used the default value of the CHUNK parameter of LOB
storage when creating a LOB column, then this is equivalent to (4 gigabytes - 1) *
(database block size).

CLOB objects have full transactional support. Changes made through SQL, the DBMS_LOB
package, or Oracle Call Interface (OCI) participate fully in the transaction. CLOB value
manipulations can be committed and rolled back. However, you cannot save a CLOB
locator in a PL/SQL or OCI variable in one transaction and then use it in another
transaction or session.

2.1.1.6.4 NCLOB Data Type

The NCLOB data type stores Unicode data. Both fixed-width and variable-width character
sets are supported, and both use the national character set. NCLOB objects can store up
to (4 gigabytes -1) * (the value of the CHUNK parameter of LOB storage) of character text
data. If the tablespaces in your database are of standard block size, and if you have
used the default value of the CHUNK parameter of LOB storage when creating a LOB
column, then this is equivalent to (4 gigabytes - 1) * (database block size).

NCLOB objects have full transactional support. Changes made through SQL, the
DBMS_LOB package, or OCI participate fully in the transaction. NCLOB value manipulations
can be committed and rolled back. However, you cannot save an NCLOB locator in a
PL/SQL or OCI variable in one transaction and then use it in another transaction or
session.

See Also:

Oracle Database Globalization Support Guide for information on Unicode data
type support

ORACLE 2-31

Chapter 2
Data Types

2.1.1.7 Extended Data Types

ORACLE

Beginning with Oracle Database 12c¢, you can specify a maximum size of 32767 bytes
for the VARCHAR2, NVARCHAR2, and RAW data types. You can control whether your database
supports this new maximum size by setting the initialization parameter MAX_STRING_SIZE
as follows:

e If MAX_STRING_SIZE = STANDARD, then the size limits for releases prior to Oracle
Database 12¢ apply: 4000 bytes for the VARCHAR2 and NVARCHAR2 data types, and
2000 bytes for the RAW data type. This is the default.

e If MAX_STRING_SIZE = EXTENDED, then the size limit is 32767 bytes for the VARCHAR2,
NVARCHAR2, and RAW data types.

¢ See Also:

Setting MAX_STRING_SIZE = EXTENDED may update database objects and possibly
invalidate them. Refer to Oracle Database Reference for complete information
on the implications of this parameter and how to set and enable this new
functionality.

A VARCHAR2 or NVARCHAR2 data type with a declared size of greater than 4000 bytes, or a
RAW data type with a declared size of greater than 2000 bytes, is an extended data
type. Extended data type columns are stored out-of-line, leveraging Oracle's LOB
technology. The LOB storage is always aligned with the table. In tablespaces
managed with Automatic Segment Space Management (ASSM), extended data type
columns are stored as SecureFiles LOBs. Otherwise, they are stored as BasicFiles
LOBs. The use of LOBs as a storage mechanism is internal only. Therefore, you
cannot manipulate these LOBs using the DBMS_LOB package.

Note:

* Oracle strongly discourages the use of BasicFiles LOBs as a storage
mechanism. BasicFiles LOBs not only impose restrictions on the
capabilities of extended data type columns, but the BasicFiles data type is
planned to be deprecated in a future release.

* Extended data types are subject to the same rules and restrictions as
LOBs. Refer to Oracle Database SecureFiles and Large Objects
Developer's Guide for more information.

Note that, although you must set MAX_STRING_SIZE = EXTENDED in order to set the size of
a RAW data type to greater than 2000 bytes, a RAW data type is stored as an out-of-line
LOB only if it has a size of greater than 4000 bytes. For example, you must set
MAX_STRING_SIZE = EXTENDED in order to declare a RAW(3000) data type. However, the
column is stored inline.

You can use extended data types just as you would standard data types, with the
following considerations:

2-32

Chapter 2
Data Types

For special considerations when creating an index on an extended data type
column, or when requiring an index to enforce a primary key or unique constraint,
see Creating an Index on an Extended Data Type Column (page 13-118).

If the partitioning key column for a list partition is an extended data type column,
then the list of values that you want to specify for a partition may exceed the 4K
byte limit for the partition bounds. See the list_partitions (page 15-101) clause of
CREATE TABLE for information on how to work around this issue.

The value of the initialization parameter MAX_STRING_SIZE affects the following:

— The maximum length of a text literal. See Text Literals (page 2-55) for more
information.

— The size limit for concatenating two character strings. See Concatenation
Operator (page 4-4) for more information.

— The length of the collation key returned by the NLSSORT function. See
NLSSORT (page 7-218).

— The size of some of the attributes of the XMLFormat object. See XML Format
Model (page 2-83) for more information.

— The size of some expressions in the following XML functions:
XMLCOLATTVAL (page 7-407), XMLELEMENT (page 7-411), XMLFOREST
(page 7-414), XMLPI (page 7-418), and XMLTABLE (page 7-424).

2.1.2 Rowid Data Types

Each row in the database has an address. The sections that follow describe the two
forms of row address in an Oracle Database.

2.1.2.1 ROWID Data Type

The rows in heap-organized tables that are native to Oracle Database have row
addresses called rowids. You can examine a rowid row address by querying the
pseudocolumn ROWID. Values of this pseudocolumn are strings representing the
address of each row. These strings have the data type ROWID. You can also create
tables and clusters that contain actual columns having the ROWID data type. Oracle
Database does not guarantee that the values of such columns are valid rowids. Refer
to Pseudocolumns (page 3-1) for more information on the ROWID pseudocolumn.

ORACLE

Rowids contain the following information:

The data block of the data file containing the row. The length of this string
depends on your operating system.

The row in the data block.

The database file containing the row. The first data file has the number 1. The
length of this string depends on your operating system.

The data object number, which is an identification number assigned to every
database segment. You can retrieve the data object number from the data
dictionary views USER_OBJECTS, DBA_OBJECTS, and ALL_OBJECTS. Objects that share the
same segment (clustered tables in the same cluster, for example) have the same
object number.

Rowids are stored as base 64 values that can contain the characters A-Z, a-z, 0-9,
and the plus sign (+) and forward slash (/). Rowids are not available directly. You can

2-33

Chapter 2
Data Types

use the supplied package DBMS_ROWID to interpret rowid contents. The package
functions extract and provide information on the four rowid elements listed above.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information on
the functions available with the DBMS_ROWID package and how to use them

2.1.2.2 UROWID Data Type

2.1.3 ANSI,

ORACLE

The rows of some tables have addresses that are not physical or permanent or were
not generated by Oracle Database. For example, the row addresses of index-
organized tables are stored in index leaves, which can move. Rowids of foreign tables
(such as DB2 tables accessed through a gateway) are not standard Oracle rowids.

Oracle uses universal rowids (urowids) to store the addresses of index-organized and
foreign tables. Index-organized tables have logical urowids and foreign tables have
foreign urowids. Both types of urowid are stored in the ROWID pseudocolumn (as are the
physical rowids of heap-organized tables).

Oracle creates logical rowids based on the primary key of the table. The logical rowids
do not change as long as the primary key does not change. The ROWID pseudocolumn
of an index-organized table has a data type of UROWID. You can access this
pseudocolumn as you would the ROWID pseudocolumn of a heap-organized table (using
a SELECT ... ROWID statement). If you want to store the rowids of an index-organized
table, then you can define a column of type UROWID for the table and retrieve the value
of the ROWID pseudocolumn into that column.

DB2, and SQL/DS Data Types

SQL statements that create tables and clusters can also use ANSI data types and data
types from the IBM products SQL/DS and DB2. Oracle recognizes the ANSI or IBM
data type name that differs from the Oracle Database data type name. It converts the
data type to the equivalent Oracle data type, records the Oracle data type as the name
of the column data type, and stores the column data in the Oracle data type based on
the conversions shown in the tables that follow.

Table 2-6 ANSI Data Types Converted to Oracle Data Types

ANSI SQL Data Type Oracle Data Type
CHARACTER(n) CHAR(n)

CHAR(n)

CHARACTER VARYING(n) VARCHAR2(n)

CHAR VARYING(n)

NATIONAL CHARACTER(n) NCHAR(n)
NATIONAL CHAR(n)

NCHAR(n)

2-34

ORACLE

Chapter 2
Data Types

Table 2-6 (Cont.) ANSI Data Types Converted to Oracle Data Types
]
ANSI SQL Data Type Oracle Data Type

NATIONAL CHARACTER VARYING(n) NVARCHAR2(n)

NATIONAL CHAR VARYING(n)

NCHAR VARY ING(n)

NUMERIC[(p,s)] NUMBER(p,S)
DECIMALL(p,s)] (Note 1)

INTEGER NUMBER(p,0)
INT

SMALLINT

FLOAT (Note 2) FLOAT(126)
DOUBLE PRECISION (Note 3) FLOAT(126)
REAL (Note 4) FLOAT(63)
Notes:

1. The NUMERIC and DECIMAL data types can specify only fixed-point numbers. For
those data types, the scale (s) defaults to 0.

2. The FLOAT data type is a floating-point number with a binary precision b. The
default precision for this data type is 126 binary, or 38 decimal.

3. The DOUBLE PRECISION data type is a floating-point number with binary precision
126.

4. The REAL data type is a floating-point number with a binary precision of 63, or 18
decimal.

Do not define columns with the following SQL/DS and DB2 data types, because they
have no corresponding Oracle data type:

* GRAPHIC

* LONG VARGRAPHIC
* VARGRAPHIC

e TIME

Note that data of type TIME can also be expressed as Oracle datetime data.

See Also:

Datetime and Interval Data Types (page 2-19)

Table 2-7 SQL/DS and DB2 Data Types Converted to Oracle Data Types
|

SQLI/DS or DB2 Data Type Oracle Data Type
CHARACTER(n) CHAR(Nn)
VARCHAR(N) VARCHAR(N)

2-35

Chapter 2
Data Types

Table 2-7 (Cont.) SQL/DS and DB2 Data Types Converted to Oracle Data Types

SQLI/DS or DB2 Data Type Oracle Data Type
LONG VARCHAR LONG
DECIMAL(p,Ss) (Note 1) NUMBER(p,S)
INTEGER NUMBER(p,0)
SMALLINT

FLOAT (Note 2) NUMBER
Notes:

1. The DECIMAL data type can specify only fixed-point numbers. For this data type, s
defaults to 0.

2. The FLOAT data type is a floating-point number with a binary precision b. The
default precision for this data type is 126 binary or 38 decimal.

2.1.4 User-Defined Types

User-defined data types use Oracle built-in data types and other user-defined data
types as the building blocks of object types that model the structure and behavior of
data in applications. The sections that follow describe the various categories of user-
defined types.

See Also:

* Oracle Database Concepts for information about Oracle built-in data types

* CREATE TYPE (page 15-166) and the CREATE TYPE BODY (page 15-168)
for information about creating user-defined types

* Oracle Database Object-Relational Developer's Guide for information
about using user-defined types

2.1.4.1 Object Types

Object types are abstractions of the real-world entities, such as purchase orders, that
application programs deal with. An object type is a schema object with three kinds of
components:

* A name, which identifies the object type uniquely within that schema.

* Attributes, which are built-in types or other user-defined types. Attributes model
the structure of the real-world entity.

* Methods, which are functions or procedures written in PL/SQL and stored in the
database, or written in a language like C or Java and stored externally. Methods
implement operations the application can perform on the real-world entity.

ORACLE 2-36

Chapter 2
Data Types

2.1.4.2 REF Data Types

An object identifier (represented by the keyword 01D) uniquely identifies an object
and enables you to reference the object from other objects or from relational tables. A
data type category called REF represents such references. A REF data type is a
container for an object identifier. REF values are pointers to objects.

When a REF value points to a nonexistent object, the REF is said to be "dangling”. A
dangling REF is different from a null REF. To determine whether a REF is dangling or not,
use the condition 1S [NOT] DANGLING. For example, given object view oc_orders in the
sample schema oe, the column customer_ref is of type REF to type customer_typ, which
has an attribute cust_email:

SELECT o.customer_ref.cust_email
FROM oc_orders o
WHERE o.customer_ref IS NOT DANGLING;

2.1.4.3 Varrays

An array is an ordered set of data elements. All elements of a given array are of the
same data type. Each element has an index, which is a number corresponding to the
position of the element in the array.

The number of elements in an array is the size of the array. Oracle arrays are of
variable size, which is why they are called varrays. You must specify a maximum size
when you declare the varray.

When you declare a varray, it does not allocate space. It defines a type, which you can
use as:

* The data type of a column of a relational table
* An object type attribute
A PL/SQL variable, parameter, or function return type

Oracle normally stores an array object either in line (as part of the row data) or out of
line (in a LOB), depending on its size. However, if you specify separate storage
characteristics for a varray, then Oracle stores it out of line, regardless of its size.
Refer to the varray_col_properties (page 15-90) of CREATE TABLE (page 15-16) for
more information about varray storage.

2.1.4.4 Nested Tables

ORACLE

A nested table type models an unordered set of elements. The elements may be built-
in types or user-defined types. You can view a nested table as a single-column table
or, if the nested table is an object type, as a multicolumn table, with a column for each
attribute of the object type.

A nested table definition does not allocate space. It defines a type, which you can use
to declare:

e The data type of a column of a relational table
e An object type attribute

e A PL/SQL variable, parameter, or function return type

2-37

Chapter 2
Data Types

When a nested table appears as the type of a column in a relational table or as an
attribute of the underlying object type of an object table, Oracle stores all of the nested
table data in a single table, which it associates with the enclosing relational or object
table.

2.1.5 Oracle-Supplied Types

Oracle provides SQL-based interfaces for defining new types when the built-in or
ANSI-supported types are not sufficient. The behavior for these types can be
implemented in C/C++, Java, or PL/ SQL. Oracle Database automatically provides the
low-level infrastructure services needed for input-output, heterogeneous client-side
access for new data types, and optimizations for data transfers between the
application and the database.

These interfaces can be used to build user-defined (or object) types and are also used
by Oracle to create some commonly useful data types. Several such data types are
supplied with the server, and they serve both broad horizontal application areas (for
example, the Any types) and specific vertical ones (for example, the spatial types).

The Oracle-supplied types, along with cross-references to the documentation of their
implementation and use, are described in the following sections:

e Any Types (page 2-38)
XML Types (page 2-39)
e Spatial Types (page 2-41)
e Media Types (page 2-42)

2.1.6 Any Types

The Any types provide highly flexible modeling of procedure parameters and table
columns where the actual type is not known. These data types let you dynamically
encapsulate and access type descriptions, data instances, and sets of data instances
of any other SQL type. These types have OCI and PL/SQL interfaces for construction
and access.

2.1.6.1 ANYTYPE

This type can contain a type description of any named SQL type or unnamed transient
type.

2.1.6.2 ANYDATA

This type contains an instance of a given type, with data, plus a description of the type.
ANYDATA can be used as a table column data type and lets you store heterogeneous
values in a single column. The values can be of SQL built-in types as well as user-
defined types.

2.1.6.3 ANYDATASET

ORACLE

This type contains a description of a given type plus a set of data instances of that
type. ANYDATASET can be used as a procedure parameter data type where such
flexibility is needed. The values of the data instances can be of SQL built-in types as
well as user-defined types.

2-38

Chapter 2
Data Types

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for information on
the ANYTYPE, ANYDATA, and ANYDATASET types

2.1.7 XML Types

Extensible Markup Language (XML) is a standard format developed by the World
Wide Web Consortium (W3C) for representing structured and unstructured data on the
World Wide Web. Universal resource identifiers (URIs) identify resources such as Web
pages anywhere on the Web. Oracle provides types to handle XML and URI data, as
well as a class of URIs called DBURIRef types to access data stored within the database
itself. It also provides a set of types to store and access both external and internal
URIs from within the database.

2.1.7.1 XMLType

This Oracle-supplied type can be used to store and query XML data in the database.
XMLType has member functions you can use to access, extract, and query the XML data
using XPath expressions. XPath is another standard developed by the W3C
committee to traverse XML documents. Oracle XMLType functions support many W3C
XPath expressions. Oracle also provides a set of SQL functions and PL/SQL
packages to create XMLType values from existing relational or object-relational data.

XMLType is a system-defined type, so you can use it as an argument of a function or as
the data type of a table or view column. You can also create tables and views of
XMLType. When you create an XMLType column in a table, you can choose to store the
XML data in a CLOB column, as binary XML (stored internally as a CLOB), or object
relationally.

You can also register the schema (using the DBMS_XMLSCHEMA package) and create a
table or column conforming to the registered schema. In this case Oracle stores the
XML data in underlying object-relational columns by default, but you can specify
storage in a CLOB or binary XML column even for schema-based data.

Queries and DML on XMLType columns operate the same regardless of the storage
mechanism.

See Also:

Oracle XML DB Developer’s Guidefor information about using XMLType
columns

2.1.7.2 URI Data Types

ORACLE

Oracle supplies a family of URI types—URIType, DBURIType, XDBURIType, and HTTPURIType
—which are related by an inheritance hierarchy. URIType is an object type and the
others are subtypes of URIType. Since URIType is the supertype, you can create
columns of this type and store DBURIType or HTTPURIType type instances in this column.

2-39

Chapter 2
Data Types

HTTPURIType

You can use HTTPURIType to store URLSs to external Web pages or to files. Oracle
accesses these files using HTTP (Hypertext Transfer Protocol).

XDBURIType

You can use XDBURIType to expose documents in the XML database hierarchy as URIs
that can be embedded in any URIType column in a table. The XDBURIType consists of a
URL, which comprises the hierarchical name of the XML document to which it refers
and an optional fragment representing the XPath syntax. The fragment is separated
from the URL part by a pound sign (#). The following lines are examples of XDBURIType:

/home/oe/docl .xml
/home/oe/docl.xml#/orders/order_item

DBURIType

DBURIType can be used to store DBURIRef values, which reference data inside the
database. Storing DBURIRef values lets you reference data stored inside or outside the
database and access the data consistently.

DBURIRef values use an XPath-like representation to reference data inside the
database. If you imagine the database as an XML tree, then you would see the tables,
rows, and columns as elements in the XML document. For example, the sample
human resources user hr would see the following XML tree:

<HR>
<EMPLOYEES>
<ROW>
<EMPLOYEE_1D>205</EMPLOYEE_ID>
<LAST_NAME>Higgins</LAST_NAME>
<SALARY>12008</SALARY>
. <l-- other columns -->
</ROW>
. <I-- other rows -->
</EMPLOYEES>
<I-- other tables..-->
</HR>
<I-- other user schemas on which you have some privilege on..-->

The DBURIRef is an XPath expression over this virtual XML document. So to reference
the SALARY value in the EMPLOYEES table for the employee with employee number 205,
you can write a DBURIRef as,

/HR/EMPLOYEES/ROW[EMPLOYEE_1D=205]/SALARY

Using this model, you can reference data stored in CLOB columns or other columns and
expose them as URLSs to the external world.

2.1.7.3 URIFactory Package

ORACLE

Oracle also provides the URIFactory package, which can create and return instances of
the various subtypes of the URITypes. The package analyzes the URL string, identifies
the type of URL (HTTP, DBURI, and so on), and creates an instance of the subtype. To
create a DBURI instance, the URL must begin with the prefix Zoradb. For example,
URIFactory.getURI("/oradb/HR/EMPLOYEES™) would create a DBURIType instance and
URIFactory.getUri("/sys/schema™) would create an XDBURIType instance.

2-40

Chapter 2
Data Types

¢ See Also:

* Oracle Database Object-Relational Developer's Guide for general
information on object types and type inheritance

e Oracle XML DB Developer’s Guide for more information about these
supplied types and their implementation

* Oracle Database Advanced Queuing User's Guide for information about
using XMLType with Oracle Advanced Queuing

2.1.8 Spatial Types

Oracle Spatial and Graph is designed to make spatial data management easier and
more natural to users of location-enabled applications, geographic information system
(GIS) applications, and geoimaging applications. After the spatial data is stored in an
Oracle Database, you can easily manipulate, retrieve, and relate it to all the other data
stored in the database. The following data types are available only if you have installed
Oracle Spatial and Graph.

2.1.8.1 SDO_GEOMETRY

The geometric description of a spatial object is stored in a single row, in a single
column of object type SDO_GEOMETRY in a user-defined table. Any table that has a column
of type SDO_GEOMETRY must have another column, or set of columns, that defines a
unique primary key for that table. Tables of this sort are sometimes called geometry
tables.

The SDO_GEOMETRY object type has the following definition:

CREATE TYPE SDO_GEOMETRY AS OBJECT

(sgo_gtype NUMBER,
sdo_srid NUMBER,
sdo_point SDO_POINT_TYPE,

sdo_elem_info SDO_ELEM_INFO_ARRAY,
sdo_ordinates SDO_ORDINATE_ARRAY);

2.1.8.2SDO_TOPO_GEOMETRY

ORACLE

This type describes a topology geometry, which is stored in a single row, in a single
column of object type SDO_TOPO_GEOMETRY in a user-defined table.

The SDO_TOPO_GEOMETRY object type has the following definition:

CREATE TYPE SDO_TOPO_GEOMETRY AS OBJECT
(tg_type NUMBER,
tg_id NUMBER,
tg_layer_id NUMBER,
topology_id NUMBER) ;
/

2-41

Chapter 2
Data Types

2.1.8.3 SDO_GEORASTER

In the GeoRaster object-relational model, a raster grid or image object is stored in a
single row, in a single column of object type SDO_GEORASTER in a user-defined table.
Tables of this sort are called GeoRaster tables.

The SDO_GEORASTER object type has the following definition:

CREATE TYPE SDO_GEORASTER AS OBJECT

(rasterType NUMBER,
spatialExtent SDO_GEOMETRY,
rasterDataTable VARCHAR2(32),
rasterlD NUMBER,
metadata XMLType);

/
See Also:

Oracle Spatial and Graph Developer's Guide, Oracle Spatial and Graph
Topology Data Model and Network Data Model Graph Developer's Guide, and
Oracle Spatial and Graph GeoRaster Developer's Guide for information on the
full implementation of the spatial data types and guidelines for using them

2.1.9 Media Types

ORACLE

Oracle Multimedia can use object types, similar to Java or C++ classes, to describe
multimedia data. An instance of these object types consists of attributes, including
metadata and the media data, and methods. The Multimedia data types are created in
the ORDSYS schema. Public synonyms exist for all the data types, so you can access
them without specifying the schema name.

Oracle Multimedia provides the following object types:

* ORDAudio
Supports the storage and management of audio data.
e ORDDicom

Supports the storage and management of Digital Imaging and Communications in
Medicine (DICOM), the format universally recognized as the standard for medical
imaging.

e ORDDoc

Supports storage and management of any type of media data, including audio,
image and video data. Use this type when you want all media to be stored in a
single column.

* ORDImage
Supports the storage and management of image data.
* ORDVideo

Supports the storage and management of video data.

2-42

ORACLE

Chapter 2
Data Types

The following data types provide compliance with the ISO-IEC 13249-5 Still Image
standard, commonly referred to as SQL/MM Stillilmage:

* SI_AverageColor

Represents a feature that characterizes an image by its average color.
e Sl _Color

Encapsulates color values.
e Sl_ColorHistogram

Represents a feature that characterizes an image by the relative frequencies of
the colors exhibited by samples of the raw image.

e Sl _FeatureList

A list containing up to four of the image features represented by the preceding
object types (S1_AverageColor, SI_ColorHistogram, SI_PositionalColor, and
S1_Texture), where each feature is associated with a feature weight.

* Sl _PositionalColor

Given an image divided into n by m rectangles, the SI_PositionalColor object type
represents the feature that characterizes an image by the n by m most significant
colors of the rectangles.

e SI_Stilllmage

Represents digital images with inherent image characteristics such as height,
width, and format.

e Sl _Texture

Represents a feature that characterizes an image by the size of repeating items
(coarseness), brightness variations (contrast), and predominant direction
(directionality).

Note:

The Oracle Multimedia support for object types that comply with the first
edition of the ISO/IEC 13249-5:2001 SQLMM Part5:Stilllmage standard
(commonly referred to as the SQL/MM Still Image standard) is deprecated in
Oracle Database 12c Release 2 (12.2), and may be desupported in a future
release. See Oracle Multimedia Reference for more information.

See Also:

e Oracle Multimedia DICOM Developer's Guide for information on the
ORDDicom object type

* Oracle Multimedia Reference for information on all other object types
listed in this section

2-43

Chapter 2
Data Type Comparison Rules

2.2 Data Type Comparison Rules

This section describes how Oracle Database compares values of each data type.

2.2.1 Numeric Values

A larger value is considered greater than a smaller one. All negative numbers are less
than zero and all positive numbers. Thus, -1 is less than 100; -100 is less than -1.

The floating-point value NaN (not a number) is greater than any other numeric value
and is equal to itself.

See Also:

Numeric Precedence (page 2-17) and Floating-Point Numbers (page 2-16) for
more information on comparison semantics

2.2.2 Datetime Values

A later date or timestamp is considered greater than an earlier one. For example, the
date equivalent of '29-MAR-2005' is less than that of '05-JAN-2006' and the timestamp
equivalent of '05-JAN-2006 1:35pm' is greater than that of '05-JAN-2005 10:09am'.

When two timestamps with time zone are compared, they are first normalized to UTC,
that is, to the timezone offset '+00:00'. For example, the timestamp with time zone
equivalent of '16-OCT-2016 05:59am Europe/Warsaw' is equal to that of '15-
OCT-2016 08:59pm US/Pacific'. Both represent the same absolute point in time, which
represented in UTC is October 16th, 2016, 03:59am.

2.2.3 Binary Values

A binary value of the data type RAW or BLOB is a sequence of bytes. When two binary
values are compared, the corresponding, consecutive bytes of the two byte sequences
are compared in turn. If the first bytes of both compared values are different, the binary
value that contains the byte with the lower numeric value is considered smaller. If the
first bytes are equal, second bytes are compared analogously, and so on, until either
the compared bytes differ or the comparison process reaches the end of one of the
values. In the latter case, the value that is shorter is considered smaller.

Binary values of the data type BLOB cannot be compared directly in comparison
conditions. However, they can be compared with the PL/SQL function
DBMS_LOB.COMPARE.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information on the DBMS_LOB.COMPARE function

ORACLE 2.44

Chapter 2
Data Type Comparison Rules

2.2.4 Character Values

Character values are compared on the basis of two measures:
* Binary or linguistic collation
» Blank-padded or nonpadded comparison semantics

The following subsections describe the two measures.

Binary and Linguistic Collation

In binary collation, which is the default, Oracle compares character values like binary
values. Two sequences of bytes that form the encodings of two character values in
their storage character set are treated as binary values and compared as described in
Binary Values (page 2-44). The result of this comparison is returned as the result of
the binary comparison of the source character values.

See Also:

Oracle Database Globalization Support Guide for more information on
character sets

For many languages, the binary collation can yield a linguistically incorrect ordering of
character values. For example, in most common character sets, all the uppercase
Latin letters have character codes with lower values than all the lowercase Latin
letters. Hence, the binary collation yields the following order:

MacDonald
MacIntosh
Macdonald
Macintosh

However, most users expect these four values to be presented in the order:

MacDonald
Macdonald
MaclIntosh
Macintosh

This shows that binary collation may not be suitable even for English character values.

Oracle Database supports linguistic collations that order strings according to rules of
various spoken languages. It also supports collation variants that match character
values case- and accent-insensitively. Linguistic collations are more expensive but
they provide superior user experience.

See Also:

Oracle Database Globalization Support Guide for more information about
linguistic sorting

ORACLE 2.45

ORACLE

Chapter 2
Data Type Comparison Rules

Restrictions for Linguistic Collations

Comparison conditions, ORDER BY, GROUP BY and MATCH_RECOGNIZE query clauses,
COUNT(DISTINCT) and statistical aggregate functions, LIKE conditions, and ORDER BY and
PARTITION BY analytic clauses generate collation keys when using linguistic collations.
The collation keys are the same values that are returned by the function NLSSORT and
are subject to the same restrictions that are described in NLSSORT (page 7-218).

Blank-Padded and Nonpadded Comparison Semantics

With blank-padded semantics, if the two values have different lengths, then Oracle first
adds blanks to the end of the shorter one so their lengths are equal. Oracle then
compares the values character by character up to the first character that differs. The
value with the greater character in the first differing position is considered greater. If
two values have no differing characters, then they are considered equal. This rule
means that two values are equal if they differ only in the number of trailing blanks.
Oracle uses blank-padded comparison semantics only when both values in the
comparison are either expressions of data type CHAR, NCHAR, text literals, or values
returned by the USER function.

With nonpadded semantics, Oracle compares two values character by character up to
the first character that differs. The value with the greater character in that position is
considered greater. If two values of different length are identical up to the end of the
shorter one, then the longer value is considered greater. If two values of equal length
have no differing characters, then the values are considered equal. Oracle uses
nonpadded comparison semantics whenever one or both values in the comparison
have the data type VARCHAR2 or NVARCHAR2.

The results of comparing two character values using different comparison semantics
may vary. The table that follows shows the results of comparing five pairs of character
values using each comparison semantic. Usually, the results of blank-padded and
nonpadded comparisons are the same. The last comparison in the table illustrates the
differences between the blank-padded and nonpadded comparison semantics.

Blank-Padded Nonpadded
"ac" > "ab” "ac" > "ab”
“ab” > *a " “ab” > *a "
ab” > "at ab” > "at
"ab" = "ab® "ab" = "ab®
o= g s g

Data-Bound Collation

Starting with Oracle Database 12c¢ Release 2 (12.2), the collation to use when
comparing or matching a given character value is associated with the value itself. It is
called the data-bound collation. The data-bound collation can be viewed as an
attribute of the data type of the value.

In previous Oracle Database releases, the session parameters NLS_COMP and NLS_SORT
coarsely determined the collation for all collation-sensitive SQL operations in a
database session. The data-bound collation architecture enables applications to
consistently apply language-specific comparison rules to exactly the data that needs
these rules.

2-46

Chapter 2
Data Type Comparison Rules

Oracle Database 12c Release 2 (12.2) allows you to declare a collation for a table
column. When a column is passed as an argument to a collation-sensitive SQL
operation, the SQL operation uses the column's declared collation to process the
column's values. If the SQL operation has multiple character arguments that are
compared to each other, the collation determination rules determine the collation to
use.

There are two types of data-bound collations:

 Named Collation: This collation is a particular set of collating rules specified by a
collation name. Named collations are the same collations that are specified as
values for the NLS_SORT parameter. A named collation can be either a binary
collation or a linguistic collation.

* Pseudo-collation: This collation does not directly specify the collating rules for a
SQL operation. Instead, it instructs the operation to check the values of the
session parameters NLS_SORT and NLS_COMP for the actual named collation to use.
Pseudo-collations are the bridge between the new declarative method of
specifying collations and the old method that uses session parameters. In
particular, the pseudo-collation USING_NLS_COMP directs a SQL operation to behave
exactly as it used to behave before Oracle Database 12¢ Release 2.

When you declare a named collation for a column, you statically determine how the
column values are compared. When you declare a pseudo-collation, you can
dynamically control comparison behavior with the session parameter NLS_COMP and
NLS_SORT. However, static objects, such as indexes and constraints, defined on a
column declared with a pseudo-collation, fall back to using a binary collation.
Dynamically settable collating rules cannot be used to compare values for a static
object.

The collation for a character literal or bind variable that is used in an expression is
derived from the default collation of the database object containing the expression,
such as a view or materialized view query, a PL/SQL stored unit code, a user-defined
type method code, or a standalone DML or query statement. In Oracle Database 12¢
Release 2, the default collation of PL/SQL stored units, user-defined type methods,
and standalone SQL statements is always the pseudo-collation USING_NLS_COMP. The
default collation of views and materialized views can be specified in the DEFAULT
COLLATION clause of the CREATE VIEW and CREATE MATERIALIZED VIEW statements.

If a SQL operation returns character values, the collation derivation rules determine
the derived collation for the result, so that its collation is known, when the result is
passed as an argument to another collation-sensitive SQL operation in the expression
tree or to a top-level consumer, such as an SQL statement clause in a SELECT
statement. If a SQL operation operates on character argument values, then the
derived collation of its character result is based on the collations of the arguments.
Otherwise, the derivation rules are the same as for a character literal.

You can override the derived collation of an expression node, such as a simple
expression or an operator result, by using the COLLATE operator.

Oracle Database allows you to declare a case-insensitive collation for a column, table
or schema, so that the column or all character columns in a table or a schema can be
always compared in a case-insensitive way.

ORACLE 247

Chapter 2
Data Type Comparison Rules

See Also:

* Oracle Database Globalization Support Guide for more information on
data-bound collation architecture, including the detailed collation
derivation and determination rules

e COLLATE Operator (page 4-3)

2.2.5 Object Values

Object values are compared using one of two comparison functions: MAP and ORDER.
Both functions compare object type instances, but they are quite different from one
another. These functions must be specified as part of any object type that will be
compared with other object types.

See Also:

CREATE TYPE (page 15-166) for a description of MAP and ORDER methods and
the values they return

2.2.6 Varrays and Nested Tables

Comparison of nested tables is described in Comparison Conditions (page 6-4).

2.2.7 Data Type Precedence

Oracle uses data type precedence to determine implicit data type conversion, which is
discussed in the section that follows. Oracle data types take the following precedence:

e Datetime and interval data types
* BINARY_DOUBLE

* BINARY_FLOAT

* NUMBER

e Character data types

e All other built-in data types

2.2.8 Data Conversion

Generally an expression cannot contain values of different data types. For example,
an expression cannot multiply 5 by 10 and then add 'JAMES'. However, Oracle
supports both implicit and explicit conversion of values from one data type to another.

2.2.8.1 Implicit and Explicit Data Conversion

Oracle recommends that you specify explicit conversions, rather than rely on implicit or
automatic conversions, for these reasons:

ORACLE 2-48

Chapter 2
Data Type Comparison Rules

SQL statements are easier to understand when you use explicit data type
conversion functions.

Implicit data type conversion can have a negative impact on performance,
especially if the data type of a column value is converted to that of a constant
rather than the other way around.

Implicit conversion depends on the context in which it occurs and may not work
the same way in every case. For example, implicit conversion from a datetime
value to a VARCHAR2 value may return an unexpected year depending on the value
of the NLS_DATE_FORMAT parameter.

Algorithms for implicit conversion are subject to change across software releases
and among Oracle products. Behavior of explicit conversions is more predictable.

If implicit data type conversion occurs in an index expression, then Oracle
Database might not use the index because it is defined for the pre-conversion data
type. This can have a negative impact on performance.

2.2.8.2 Implicit Data Conversion

Table 2-8

Oracle Database automatically converts a value from one data type to another when
such a conversion makes sense.

Table 2-8 (page 2-49) is a matrix of Oracle implicit conversions. The table shows all
possible conversions, without regard to the direction of the conversion or the context in
which it is made. The rules governing these details follow the table.

Implicit Type Conversion Matrix

Data CHA VAR NCH NVA DAT DAT NUM BIN BIN LON RAW RO CLO BLO NCL
Type R CHA AR RCH E ETIM BER ARY ARY G WID B B OB
R2 AR2 E/ _FL _DO

INTE OAT UBL

RVA E

L
CHAR -- X X X X X X X X X X
VARCHAR X - X X X X X X X X -
2
NCHAR X - X -
NVARCHA X X - -
R2
DATE X -
DATETIM X S
E/
INTERVA
L
NUMBER X - - X - - -
BINARY_ X - - x - - - o
FLOAT
BINARY, X X X X - - X X - - - - - - =
DOUBLE
ORACLE 549

Chapter 2
Data Type Comparison Rules

Table 2-8 (Cont.) Implicit Type Conversion Matrix

Data CHA VAR NCH NVA DAT DAT NUM BIN BIN LON RAW RO CLO BLO NCL
Type R CHA AR RCH E ETIM BER ARY ARY G WD B B OB
R2 AR2 El _FL _DO

INTE OAT UBL

RVA E

L
LONG X X X X - X - - < < X - X - X
RAW X X X X = e e X e e X -
ROWID X X X X = = e e
CLOB X X X X - = e e X e e X
BLOB e G
NCLOB X X X X = = = = = X = = X

1 You cannot convert LONG to INTERVAL directly, but you can convert LONG to VARCHAR2 using TO_CHAR(i nt er val), and then
convert the resulting VARCHAR2 value to INTERVAL.

ORACLE

The following rules govern implicit data type conversions:

During INSERT and UPDATE operations, Oracle converts the value to the data type of
the affected column.

During SELECT FROM operations, Oracle converts the data from the column to the
type of the target variable.

When manipulating numeric values, Oracle usually adjusts precision and scale to
allow for maximum capacity. In such cases, the numeric data type resulting from
such operations can differ from the numeric data type found in the underlying
tables.

When comparing a character value with a numeric value, Oracle converts the
character data to a numeric value.

Conversions between character values or NUMBER values and floating-point number
values can be inexact, because the character types and NUMBER use decimal
precision to represent the numeric value, and the floating-point numbers use
binary precision.

When converting a CLOB value into a character data type such as VARCHAR2, or
converting BLOB to RAW data, if the data to be converted is larger than the target
data type, then the database returns an error.

During conversion from a timestamp value to a DATE value, the fractional seconds
portion of the timestamp value is truncated. This behavior differs from earlier
releases of Oracle Database, when the fractional seconds portion of the
timestamp value was rounded.

Conversions from BINARY_FLOAT to BINARY_DOUBLE are exact.

Conversions from BINARY_DOUBLE to BINARY_FLOAT are inexact if the BINARY_DOUBLE
value uses more bits of precision that supported by the BINARY_FLOAT.

When comparing a character value with a DATE value, Oracle converts the
character data to DATE.

2-50

Chapter 2
Data Type Comparison Rules

* When you use a SQL function or operator with an argument of a data type other
than the one it accepts, Oracle converts the argument to the accepted data type.

* When making assignments, Oracle converts the value on the right side of the
equal sign (=) to the data type of the target of the assignment on the left side.

» During concatenation operations, Oracle converts from noncharacter data types to
CHAR or NCHAR.

e During arithmetic operations on and comparisons between character and
noncharacter data types, Oracle converts from any character data type to a
numeric, date, or rowid, as appropriate. In arithmetic operations between CHAR/
VARCHAR2 and NCHAR/NVARCHAR2, Oracle converts to a NUMBER.

e Most SQL character functions are enabled to accept CLOBs as parameters, and
Oracle performs implicit conversions between CLOB and character types. Therefore,
functions that are not yet enabled for CLOBs can accept CLOBs through implicit
conversion. In such cases, Oracle converts the CLOBS to CHAR or VARCHAR2 before the
function is invoked. If the CLOB is larger than 4000 bytes, then Oracle converts only
the first 4000 bytes to CHAR.

* When converting RAW or LONG RAW data to or from character data, the binary data is
represented in hexadecimal form, with one hexadecimal character representing
every four bits of RAW data. Refer to "RAW and LONG RAW Data Types
(page 2-28)" for more information.

e Comparisons between CHAR and VARCHAR2 and between NCHAR and NVARCHAR2 types
may entail different character sets. The default direction of conversion in such
cases is from the database character set to the national character set. Table 2-9
(page 2-51) shows the direction of implicit conversions between different
character types.

Table 2-9 Conversion Direction of Different Character Types

Source to CHAR to VARCHAR2 to NCHAR to NVARCHAR2
Data Type

from CHAR -- VARCHAR2 NCHAR NVARCHAR2
from VARCHAR2 - NVARCHAR2 NVARCHAR2
VARCHAR2

from NCHAR NCHAR NCHAR -- NVARCHAR2
from NVARCHAR2 NVARCHAR2 NVARCHAR2 -

NVARCHARZ2

User-defined types such as collections cannot be implicitly converted, but must be
explicitly converted using CAST ... MULTISET.

2.2.8.3 Implicit Data Conversion Examples

ORACLE

Text Literal Example

The text literal '10' has data type CHAR. Oracle implicitly converts it to the NUMBER data
type if it appears in a numeric expression as in the following statement:

SELECT salary + "10°
FROM employees;

2-51

Chapter 2
Data Type Comparison Rules

Character and Number Values Example

When a condition compares a character value and a NUMBER value, Oracle implicitly
converts the character value to a NUMBER value, rather than converting the NUMBER value
to a character value. In the following statement, Oracle implicitly converts '200' to 200:

SELECT last_name
FROM employees
WHERE employee_id = "200%;

Date Example

In the following statement, Oracle implicitly converts '24-JUN-06' to a DATE value using
the default date format 'DD-MON-YY":

SELECT last_name
FROM employees
WHERE hire_date = "24-JUN-06";

2.2.8.4 Explicit Data Conversion

You can explicitly specify data type conversions using SQL conversion functions.
Table 2-10 (page 2-52) shows SQL functions that explicitly convert a value from one
data type to another.

You cannot specify LONG and LONG RAW values in cases in which Oracle can perform
implicit data type conversion. For example, LONG and LONG RAW values cannot appear in
expressions with functions or operators. Refer to LONG Data Type (page 2-18) for
information on the limitations on LONG and LONG RAW data types.

Table 2-10 Explicit Type Conversions

Source to CHAR, to to Datetime/ to RAW to to to CLOB, to to
Data Type VARCHAR2, NUMB Interval ROWID LO NCLOB, BINARY BINARY
NCHAR, ER NG, BLOB _FLOAT _DOUB
NVARCHAR LO LE
2 NG
RA
w
from TO_CHAR TO_NUM TO_DATE HEXTORAW CHARTO- -- TO_CLOB TO_BINAR TO_BINAR
CHAR, (char.) BER TO TIMESTAMP =ROWID TO NCLOB Y_FLOAT Y_DOUBLE
VARCHARZ T0_NCHAR TO_TIMESTAMP_
» NCHAR, (char.) TZ
gVARCHAR TO_YMINTERVAL

TO_DSINTERVAL

from TO_CHAR -- TO_DATE - - -- -- TO_BINAR TO_BINAR
NUMBER (number) NUMTOYM= Y_FLOAT Y_DOUBLE
TO_NCHAR INTERVAL
(number) NUMTODS-
INTERVAL
from TO_CHAR -- -- - - -- --
Datetime (date)
/ TO_NCHAR
Interval (datetime)
ORACLE 2-52

Table 2-10 (Cont.) Explicit Type Conversions

Chapter 2

Data Type Comparison Rules

Source to CHAR, to to Datetime/ to RAW to to to CLOB, to to
Data Type VARCHAR2, NUMB Interval ROWID LO NCLOB, BINARY BINARY

NCHAR, ER NG, BLOB _FLOAT _DOUB

NVARCHAR LO LE

2 NG

RA
w

from RAW RAWTOHEX -~ - -- - -- TOBLOB -- -

RAWTONHEX
from ROWIDTOCHAR -- -- -- -- -— - - -
ROWID
from -- - - -- -- -- TO_LOB -- -
LONG /
LONG RAW
from TO_CHAR - - -- - -- TOCLOB -- -
CLOB, TO_NCHAR TO_NCLOB
NCLOB,
BLOB
from TO_CHAR - - -- -- -—- TOCLOB -- -
CLOB, TO_NCHAR TO_NCLOB
NCLOB,
BLOB
from TO_CHAR TO NUM -- - - _— - TO _BINAR TO_BINAR
BINARY_F (char.) BER Y_FLOAT Y_DOUBLE
LOAT TO_NCHAR

(char.)
from TO_CHAR TO NUM - - -- -— - TO _BINAR TO_BINAR
BINARY_D (char.) BER Y_FLOAT Y_DOUBLE
OUBLE TO_NCHAR

(char.)

See Also:

2.2.9 Security Considerations for Data Conversion

Conversion Functions (page 7-7) for details on all of the explicit conversion

functions

When a datetime value is converted to text, either by implicit conversion or by explicit
conversion that does not specify a format model, the format model is defined by one of
the globalization session parameters. Depending on the source data type, the
parameter name is NLS_DATE_FORMAT, NLS_TIMESTAMP_FORMAT, or NLS_TIMESTAMP_TZ_FORMAT.
The values of these parameters can be specified in the client environment or in an
ALTER SESSION statement.

ORACLE

2-53

Chapter 2
Data Type Comparison Rules

The dependency of format models on session parameters can have a negative impact
on database security when conversion without an explicit format model is applied to a
datetime value that is being concatenated to text of a dynamic SQL statement.
Dynamic SQL statements are those statements whose text is concatenated from
fragments before being passed to a database for execution. Dynamic SQL is
frequently associated with the built-in PL/SQL package DBMS_SQL or with the PL/SQL
statement EXECUTE IMMEDIATE, but these are not the only places where dynamically
constructed SQL text may be passed as argument. For example:

EXECUTE IMMEDIATE
"SELECT last_name FROM employees WHERE hire_date > """ || start_date || """";

where start _dat e has the data type DATE.

In the above example, the value of start _dat e is converted to text using a format
model specified in the session parameter NLS_DATE_FORMAT. The result is concatenated
into SQL text. A datetime format model can consist simply of literal text enclosed in
double quotation marks. Therefore, any user who can explicitly set globalization
parameters for a session can decide what text is produced by the above conversion. If
the SQL statement is executed by a PL/SQL procedure, the procedure becomes
vulnerable to SQL injection through the session parameter. If the procedure runs with
definer's rights, with higher privileges than the session itself, the user can gain
unauthorized access to sensitive data.

¢ See Also:

Oracle Database PL/SQL Language Reference for further examples and for
recommendations on avoiding this security risk

Note:

This security risk also applies to middle-tier applications that construct SQL
text from datetime values converted to text by the database or by OCI
datetime functions. Those applications are vulnerable if session globalization
parameters are obtained from a user preference.

Implicit and explicit conversion for numeric values may also suffer from the analogous
problem, as the conversion result may depend on the session parameter
NLS_NUMERIC_CHARACTERS. This parameter defines the decimal and group separator
characters. If the decimal separator is defined to be the quotation mark or the double
guotation mark, some potential for SQL injection emerges.

¢ See Also:

* Oracle Database Globalization Support Guide for detailed descriptions of
the session globalization parameters

* Format Models (page 2-67) for information on the format models

ORACLE 2-54

Chapter 2
Literals

2.3 Literals

The terms literal and constant value are synonymous and refer to a fixed data value.
For example, 'JACK', 'BLUE ISLAND', and '101' are all character literals; 5001 is a
numeric literal. Character literals are enclosed in single quotation marks so that Oracle
can distinguish them from schema object names.

This section contains these topics:

e Text Literals (page 2-55)

e Numeric Literals (page 2-57)
e Datetime Literals (page 2-60)
e Interval Literals (page 2-64)

Many SQL statements and functions require you to specify character and numeric
literal values. You can also specify literals as part of expressions and conditions. You
can specify character literals with the 't ext ' notation, national character literals with the
N text' notation, and numeric literals with the i nt eger, or nunber notation, depending
on the context of the literal. The syntactic forms of these notations appear in the
sections that follow.

To specify a datetime or interval data type as a literal, you must take into account any
optional precisions included in the data types. Examples of specifying datetime and
interval data types as literals are provided in the relevant sections of Data Types
(page 2-1).

2.3.1 Text Literals

ORACLE

Use the text literal notation to specify values whenever string appears in the syntax of
expressions, conditions, SQL functions, and SQL statements in other parts of this
reference. This reference uses the terms text literal, character literal, and string
interchangeably. Text, character, and string literals are always surrounded by single
guotation marks. If the syntax uses the term char, then you can specify either a text
literal or another expression that resolves to character data — for example, the
last_name column of the hr_employees table. When char appears in the syntax, the
single quotation marks are not used.

The syntax of text literals or strings follows:

string::=

B 0o
2

quote_delimiter

where N or n specifies the literal using the national character set (NCHAR or NVARCHAR2
data). By default, text entered using this notation is translated into the national
character set by way of the database character set when used by the server. To avoid
potential loss of data during the text literal conversion to the database character set,

2-55

ORACLE

Chapter 2
Literals

set the environment variable ORA_NCHAR_L ITERAL_REPLACE to TRUE. Doing so transparently
replaces the n® internally and preserves the text literal for SQL processing.

See Also:

Oracle Database Globalization Support Guide for more information about N-
guoted literals

In the top branch of the syntax:

e ¢ is any member of the user's character set. A single quotation mark (') within the
literal must be preceded by an escape character. To represent one single
guotation mark within a literal, enter two single quotation marks.

e ''are two single quotation marks that begin and end text literals.

In the bottom branch of the syntax:

* Qor qindicates that the alternative quoting mechanism will be used. This
mechanism allows a wide range of delimiters for the text string.

e The outermost " * are two single quotation marks that precede and follow,
respectively, the opening and closing quote_del i niter.

* ¢ is any member of the user's character set. You can include quotation marks () in
the text literal made up of c characters. You can also include the quote_delimiter,
as long as it is not immediately followed by a single quotation mark.

* quote_deliniter is any single- or multibyte character except space, tab, and return.
The quote_del i niter can be a single quotation mark. However, if the
quot e_del i ni ter appears in the text literal itself, ensure that it is not immediately
followed by a single quotation mark.

If the opening quote_deliniter is one of [, {, <, or (, then the closing
quot e_del i ni ter must be the corresponding 1, }, >, or). In all other cases, the
opening and closing quot e_del i mi ter must be the same character.

Text literals have properties of both the CHAR and VARCHAR2 data types:

* Within expressions and conditions, Oracle treats text literals as though they have
the data type CHAR by comparing them using blank-padded comparison semantics.

e Atext literal can have a maximum length of 4000 bytes if the initialization
parameter MAX_STRING_SIZE = STANDARD, and 32767 bytes if MAX_STRING_SIZE =
EXTENDED. See Extended Data Types (page 2-32) for more information.

Here are some valid text literals:

"Hello*

"ORACLE.dbs"
"Jackie""s raincoat”
"09-MAR-98"

N*nchar literal®

Here are some valid text literals using the alternative quoting mechanism:
g"!name LIKE "%DBMS_%%"!"

gq°<"So," she said, "It"s finished.">"

q"{SELECT * FROM employees WHERE last_name = *Smith";}"

2-56

Chapter 2
Literals

ng"T Y1234 1"
q""name like "[""*"

See Also:

Blank-Padded and Nonpadded Comparison Semantics (page 2-46)

2.3.2 Numeric Literals

Use numeric literal notation to specify fixed and floating-point numbers.

2.3.2.1 Integer Literals
You must use the integer notation to specify an integer whenever i nt eger appears in

expressions, conditions, SQL functions, and SQL statements described in other parts
of this reference.

The syntax of i nt eger follows:

integer::=

where digit isone of 0, 1, 2, 3,4,5,6,7,8,9.

An integer can store a maximum of 38 digits of precision.
Here are some valid integers:

7
+255

2.3.2.2 NUMBER and Floating-Point Literals

You must use the number or floating-point notation to specify values whenever nunber
or n appears in expressions, conditions, SQL functions, and SQL statements in other
parts of this reference.

The syntax of nunber follows:

ORACLE 2-57

ORACLE

Chapter 2
Literals

number::=

5001 (@]
= —

where

e+ or-indicates a positive or negative value. If you omit the sign, then a positive
value is the default.

e digitisoneof0,1,2,3,4,5,6,7,8o0r09.

e e or Eindicates that the number is specified in scientific notation. The digits after
the E specify the exponent. The exponent can range from -130 to 125.

- forF indicates that the number is a 32-bit binary floating point number of type
BINARY_FLOAT.

« dor D indicates that the number is a 64-bit binary floating point number of type
BINARY_DOUBLE.

If you omit f or F and d or D, then the number is of type NUMBER.

The suffixes f (F) and d (D) are supported only in floating-point number literals, not
in character strings that are to be converted to NUMBER. For example, if Oracle is
expecting a NUMBER and it encounters the string *9*, then it converts the string to
the number 9. However, if Oracle encounters the string "9f", then conversion fails
and an error is returned.

A number of type NUMBER can store a maximum of 38 digits of precision. If the literal
requires more precision than provided by NUMBER, BINARY_FLOAT, or BINARY_DOUBLE, then
Oracle truncates the value. If the range of the literal exceeds the range supported by
NUMBER, BINARY_FLOAT, or BINARY_DOUBLE, then Oracle raises an error.

Numeric literals are SQL syntax elements, which are not sensitive to NLS settings.
The decimal separator character in numeric literals is always the period (.). However, if
a text literal is specified where a numeric value is expected, then the text literal is
implicitly converted to a number in an NLS-sensitive way. The decimal separator
contained in the text literal must be the one established with the initialization
parameter NLS_NUMERIC_CHARACTERS. Oracle recommends that you use numeric literals in
SQL scripts to make them work independently of the NLS environment.

The following examples illustrate the behavior of decimal separators in numeric literals
and text literals. These examples assume that you have established the comma (,) as
the NLS decimal separator for the current session with the following statement:

ALTER SESSION SET NLS_NUMERIC_CHARACTERS=",.";

2-58

ORACLE

Chapter 2
Literals

The previous statement also establishes the period (.) as the NLS group separator, but
that is irrelevant for these examples.

This example uses the required decimal separator (.) in the numeric literal 1.23 and the
established NLS decimal separator (,) in the text literal '2,34". The text literal is
converted to the numeric value 2.34, and the output is displayed using commas for the
decimal separators.

SELECT 2 * 1.23, 3 * "2,34" FROM DUAL;

2*%1.23 3*"2,34"

The next example shows that a comma is not treated as part of a numeric literal.
Rather, the comma is treated as the delimiter in a list of two numeric expressions: 2*1
and 23.

SELECT 2 * 1,23 FROM DUAL;

The next example shows that the decimal separator in a text literal must match the
NLS decimal separator in order for implicit text-to-number conversion to succeed. The
following statement fails because the decimal separator (.) does not match the
established NLS decimal separator (,):

SELECT 3 * "2.34" FROM DUAL;

*

ERROR at line 1:
ORA-01722: invalid number

¢ See Also:
ALTER SESSION (page 11-86) and Oracle Database Reference

Here are some valid NUMBER literals:

25
+6.34
0.5
25e-03
-1

Here are some valid floating-point number literals:

25F
+6.34F
0.5d
-1D

You can also use the following supplied floating-point literals in situations where a
value cannot be expressed as a numeric literal:

2-59

Table 2-11 Floating-Point Literals

Chapter 2
Literals

Literal Meaning

Example

binary_float_nan A value of type
BINARY_FLOAT for
which the condition

IS NAN is true

binary_float_infinit Single-precision
y positive infinity

binary_double_nan A value of type
BINARY_DOUBLE for
which the condition

IS NAN is true

binary_double_infini Double-precision
ty positive infinity

SELECT COUNT(*)
FROM employees
WHERE TO_BINARY_FLOAT(commission_pct)
1= BINARY_FLOAT_NAN;

SELECT COUNT(*)
FROM employees
WHERE salary < BINARY_FLOAT_INFINITY;

SELECT COUNT(*)
FROM employees
WHERE TO_BINARY_FLOAT(commission_pct)
1= BINARY_FLOAT_NAN;

SELECT COUNT(*)
FROM employees
WHERE salary < BINARY_DOUBLE_INFINITY;

2.3.3 Datetime Literals

Oracle Database supports four datetime data types: DATE, TIMESTAMP, TIMESTAMP WITH
TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE.

ORACLE

Date Literals

You can specify a DATE value as a string literal, or you can convert a character or
numeric value to a date value with the TO_DATE function. DATE literals are the only case
in which Oracle Database accepts a T0_DATE expression in place of a string literal.

To specify a DATE value as a literal, you must use the Gregorian calendar. You can
specify an ANSI literal, as shown in this example:

DATE "1998-12-25"

The ANSI date literal contains no time portion, and must be specified in the format
'YYYY-MM-DD'. Alternatively you can specify an Oracle date value, as in the following

example:

TO_DATE("98-DEC-25 17:30","YY-MON-DD HH24:MI1")

The default date format for an Oracle DATE value is specified by the initialization
parameter NLS_DATE_FORMAT. This example date format includes a two-digit number for
the day of the month, an abbreviation of the month name, the last two digits of the

year, and a 24-hour time designation.

Oracle automatically converts character values that are in the default date format into
date values when they are used in date expressions.

2-60

ORACLE

Chapter 2
Literals

If you specify a date value without a time component, then the default time is midnight
(00:00:00 or 12:00:00 for 24-hour and 12-hour clock time, respectively). If you specify
a date value without a date, then the default date is the first day of the current month.

Oracle DATE columns always contain both the date and time fields. Therefore, if you
guery a DATE column, then you must either specify the time field in your query or
ensure that the time fields in the DATE column are set to midnight. Otherwise, Oracle
may not return the query results you expect. You can use the TRUNC date function to set
the time field to midnight, or you can include a greater-than or less-than condition in
the query instead of an equality or inequality condition.

Here are some examples that assume a table my_table with a number column row_num
and a DATE column datecol:

INSERT INTO my table VALUES (1, SYSDATE);
INSERT INTO my_table VALUES (2, TRUNC(SYSDATE));

SELECT *
FROM my_table;

ROW_NUM DATECOL

SELECT *
FROM my_table
WHERE datecol > TO_DATE("02-0CT-02", "DD-MON-YY*®);

ROW_NUM DATECOL

SELECT *
FROM my_table
WHERE datecol = TO_DATE("03-0CT-02", "DD-MON-YY");

ROW_NUM DATECOL

2 03-0CT-02

If you know that the time fields of your DATE column are set to midnight, then you can
guery your DATE column as shown in the immediately preceding example, or by using
the DATE literal:

SELECT *
FROM my_table
WHERE datecol = DATE "2002-10-03";

ROW_NUM DATECOL

2 03-0CT-02

However, if the DATE column contains values other than midnight, then you must filter
out the time fields in the query to get the correct result. For example:

SELECT *
FROM my_table
WHERE TRUNC(datecol) = DATE "2002-10-03";

2-61

ORACLE

Chapter 2
Literals

ROW_NUM DATECOL

Oracle applies the TRUNC function to each row in the query, so performance is better if
you ensure the midnight value of the time fields in your data. To ensure that the time
fields are set to midnight, use one of the following methods during inserts and updates:

e Use the TO_DATE function to mask out the time fields:

INSERT INTO my_table
VALUES (3, TO_DATE("3-0CT-2002","DD-MON-YYYY"));

* Use the DATE literal:

INSERT INTO my_table
VALUES (4, *03-0CT-02");

e Use the TRUNC function:

INSERT INTO my_table
VALUES (5, TRUNC(SYSDATE));

The date function SYSDATE returns the current system date and time. The function
CURRENT_DATE returns the current session date. For information on SYSDATE, the TO_*
datetime functions, and the default date format, see Datetime Functions (page 7-6).

TIMESTAMP Literals

The TIMESTAMP data type stores year, month, day, hour, minute, and second, and
fractional second values. When you specify TIMESTAMP as a literal, the
fractional _seconds_preci sion value can be any number of digits up to 9, as follows:

TIMESTAMP "1997-01-31 09:26:50.124°"

TIMESTAMP WITH TIME ZONE Literals

The TIMESTAMP WITH TIME ZONE data type is a variant of TIMESTAMP that includes a time
zone region name or time zone offset. When you specify TIMESTAMP WITH TIME ZONE as a
literal, the fracti onal _seconds_pr eci si on value can be any number of digits up to 9. For
example:

TIMESTAMP "1997-01-31 09:26:56.66 +02:00"

Two TIMESTAMP WITH TIME ZONE values are considered identical if they represent the
same instant in UTC, regardless of the TIME ZONE offsets stored in the data. For
example,

TIMESTAMP "1999-04-15 8:00:00 -8:00"

is the same as

TIMESTAMP "1999-04-15 11:00:00 -5:00"

8:00 a.m. Pacific Standard Time is the same as 11:00 a.m. Eastern Standard Time.

You can replace the UTC offset with the TZR (time zone region name) format element.
For example, the following example has the same value as the preceding example:

TIMESTAMP ®1999-04-15 8:00:00 US/Pacific”

2-62

Chapter 2
Literals

To eliminate the ambiguity of boundary cases when the daylight saving time switches,
use both the TZR and a corresponding TzD format element. The following example
ensures that the preceding example will return a daylight saving time value:

TIMESTAMP "1999-10-29 01:30:00 US/Pacific PDT"

You can also express the time zone offset using a datetime expression:

SELECT TIMESTAMP "2009-10-29 01:30:00" AT TIME ZONE "US/Pacific”
FROM DUAL;

See Also:

Datetime Expressions (page 5-22) for more information

If you do not add the TzD format element, and the datetime value is ambiguous, then
Oracle returns an error if you have the ERROR_ON_OVERLAP_TIME session parameter set to
TRUE. If that parameter is set to FALSE, then Oracle interprets the ambiguous datetime
as standard time in the specified region.

TIMESTAMP WITH LOCAL TIME ZONE Literals

The TIMESTAMP WITH LOCAL TIME ZONE data type differs from TIMESTAMP WITH TIME ZONE in
that data stored in the database is normalized to the database time zone. The time
zone offset is not stored as part of the column data. There is no literal for TIMESTAMP
WITH LOCAL TIME ZONE. Rather, you represent values of this data type using any of the
other valid datetime literals. The table that follows shows some of the formats you can
use to insert a value into a TIMESTAMP WITH LOCAL TIME ZONE column, along with the
corresponding value returned by a query.

Table 2-12 TIMESTAMP WITH LOCAL TIME ZONE Literals
|

Value Specified in INSERT Statement Value Returned by Query

"19-FEB-2004" 19-FEB-2004.00.00.000000
AM

SYSTIMESTAMP 19-FEB-04 02.54.36.497659
PM

TO_TIMESTAMP("19-FEB-2004", "DD-MON-YYYY®) 19-FEB-04 12.00.00.000000
AM

SYSDATE 19-FEB-04 02.55.29.000000
PM

TO_DATE("19-FEB-2004", *DD-MON-YYYY™) 19-FEB-04 12.00.00.000000
AM

TIMESTAMP*2004-02-19 8:00:00 US/Pacific” 19-FEB-04 08.00.00.000000
AM

Notice that if the value specified does not include a time component (either explicitly or
implicitly), then the value returned defaults to midnight.

ORACLE 2-63

Chapter 2
Literals

2.3.4 Interval Literals

An interval literal specifies a period of time. You can specify these differences in terms
of years and months, or in terms of days, hours, minutes, and seconds. Oracle
Database supports two types of interval literals, YEAR TO MONTH and DAY TO SECOND. Each
type contains a leading field and may contain a trailing field. The leading field defines
the basic unit of date or time being measured. The trailing field defines the smallest
increment of the basic unit being considered. For example, a YEAR TO MONTH interval
considers an interval of years to the nearest month. A DAY TO MINUTE interval considers
an interval of days to the nearest minute.

If you have date data in numeric form, then you can use the NUMTOYMINTERVAL or
NUMTODSINTERVAL conversion function to convert the numeric data into interval values.

Interval literals are used primarily with analytic functions.

See Also:

Analytic Functions (page 7-14), NUMTODSINTERVAL (page 7-224), and
NUMTOYMINTERVAL (page 7-225)

2.3.4.1 INTERVAL YEAR TO MONTH

ORACLE

Specify YEAR TO MONTH interval literals using the following syntax:

interval_year_to_month::=

O

—{ INTERVAL |->O{integer)

olc=EDI0

where

° ‘'integer [-integer]' specifies integer values for the leading and optional trailing
field of the literal. If the leading field is YEAR and the trailing field is MONTH, then the
range of integer values for the month field is 0 to 11.

e precision is the maximum number of digits in the leading field. The valid range of
the leading field precision is 0 to 9 and its default value is 2.

Restriction on the Leading Field

If you specify a trailing field, then it must be less significant than the leading field. For
example, INTERVAL '0-1' MONTH TO YEAR is not valid.

The following INTERVAL YEAR TO MONTH literal indicates an interval of 123 years, 2 months:

2-64

Chapter 2
Literals

INTERVAL "123-2" YEAR(3) TO MONTH

Examples of the other forms of the literal follow, including some abbreviated versions:

Table 2-13 Forms of INTERVAL YEAR TO MONTH Literals

__|
Form of Interval Literal Interpretation
INTERVAL "123-2" YEAR(3) TO MONTH An interval of 123 years, 2 months. You must

specify the leading field precision if it is greater
than the default of 2 digits.

INTERVAL "123" YEAR(3) An interval of 123 years 0 months.

INTERVAL "300" MONTH(3) An interval of 300 months.

INTERVAL "4 YEAR Maps to INTERVAL "4-0" YEAR TO MONTH and
indicates 4 years.

INTERVAL "50" MONTH Maps to INTERVAL "4-2" YEAR TO MONTH and
indicates 50 months or 4 years 2 months.

INTERVAL "123" YEAR Returns an error, because the default

precision is 2, and '123"' has 3 digits.

You can add or subtract one INTERVAL YEAR TO MONTH literal to or from another to yield
another INTERVAL YEAR TO MONTH literal. For example:

INTERVAL "5-3" YEAR TO MONTH + INTERVAL"20" MONTH =
INTERVAL "6-11" YEAR TO MONTH

2.3.4.2 INTERVAL DAY TO SECOND
Specify DAY TO SECOND interval literals using the following syntax:

interval_day_to_second::=

()

ﬁ@-{fractional_seconds_precisionh
| }(leading_precision) %

SECOND

MINUTE

Ie@—(fractional,seconds,precisionm

SECOND

ORACLE 2-65

ORACLE

Chapter 2
Literals

where

* integer specifies the number of days. If this value contains more digits than the
number specified by the leading precision, then Oracle returns an error.

* tinme_expr specifies a time in the format HH[:M [:SS[.n]]1] or M [:SS[.n]] or SS[.n],
where n specifies the fractional part of a second. If n contains more digits than the
number specified by fracti onal _seconds_preci si on, then n is rounded to the
number of digits specified by the fracti onal _seconds_pr eci si on value. You can
specify ti me_expr following an integer and a space only if the leading field is DAY.

e |eading_precision is the number of digits in the leading field. Accepted values are
0 to 9. The default is 2.

e fractional _seconds_precision is the number of digits in the fractional part of the
SECOND datetime field. Accepted values are 1 to 9. The default is 6.

Restriction on the Leading Field:

If you specify a trailing field, then it must be less significant than the leading field. For
example, INTERVAL MINUTE TO DAY is not valid. As a result of this restriction, if SECOND is
the leading field, the interval literal cannot have any trailing field.

The valid range of values for the trailing field are as follows:
* HOUR: O to 23

e MINUTE: O to 59

* SECOND: O to 59.999999999

Examples of the various forms of INTERVAL DAY TO SECOND literals follow, including some
abbreviated versions:

Table 2-14 Forms of INTERVAL DAY TO SECOND Literals
]

Form of Interval Literal Interpretation

INTERVAL "4 5:12:10.222" DAY TO 4 days, 5 hours, 12 minutes, 10 seconds, and
SECOND(3) 222 thousandths of a second.
INTERVAL "4 5:12" DAY TO MINUTE 4 days, 5 hours and 12 minutes.
INTERVAL "400 5" DAY(3) TO HOUR 400 days 5 hours.

INTERVAL 400" DAY(3) 400 days.

INTERVAL "11:12:10.2222222" HOUR TO 11 hours, 12 minutes, and 10.2222222
SECOND(7) seconds.

INTERVAL "11:20" HOUR TO MINUTE 11 hours and 20 minutes.

INTERVAL "10" HOUR 10 hours.

INTERVAL "10:22" MINUTE TO SECOND 10 minutes 22 seconds.

INTERVAL "10" MINUTE 10 minutes.

INTERVAL "4" DAY 4 days.

INTERVAL "25" HOUR 25 hours.

INTERVAL "40" MINUTE 40 minutes.

INTERVAL "120" HOUR(3) 120 hours.

2-66

Chapter 2
Format Models

Table 2-14 (Cont.) Forms of INTERVAL DAY TO SECOND Literals

__|
Form of Interval Literal Interpretation
INTERVAL "30.12345" SECOND(2,4) 30.1235 seconds. The fractional second

'12345' is rounded to '1235' because the
precision is 4.

You can add or subtract one DAY TO SECOND interval literal from another DAY TO SECOND
literal. For example.

INTERVAL"20" DAY - INTERVAL"240" HOUR = INTERVAL"10-0" DAY TO SECOND

2.4 Format Models

A format model is a character literal that describes the format of datetime or numeric
data stored in a character string. A format model does not change the internal
representation of the value in the database. When you convert a character string into a
date or number, a format model determines how Oracle Database interprets the string.
In SQL statements, you can use a format model as an argument of the TO_CHAR and
TO_DATE functions to specify:

* The format for Oracle to use to return a value from the database
* The format for a value you have specified for Oracle to store in the database

For example:

e The datetime format model for the string '17:45:29" is 'HH24:M1 :SS'".
e The datetime format model for the string '11-Nov-1999' is 'DD-Mon-YYYY'.
e The number format model for the string '$2,304.25' is '$9,999.99'".

For lists of number and datetime format model elements, see Table 2-15 (page 2-68)
and Table 2-17 (page 2-72).

The values of some formats are determined by the value of initialization parameters.

For such formats, you can specify the characters returned by these format elements

implicitly using the initialization parameter NLS_TERRITORY. You can change the default
date format for your session with the ALTER SESSION statement.

See Also:

e ALTER SESSION (page 11-86) for information on changing the values of
these parameters and Format Model Examples (page 2-80) for examples
of using format models

e TO_CHAR (datetime) (page 7-358), TO_CHAR (number) (page 7-362),
and TO_DATE (page 7-365)

e Oracle Database Reference and Oracle Database Globalization Support
Guide for information on these parameters

This remainder of this section describes how to use the following format models:

ORACLE 2-67

Chapter 2
Format Models

* Number Format Models (page 2-68)
» Datetime Format Models (page 2-71)
* Format Model Modifiers (page 2-79)

2.4.1 Number Format Models

You can use number format models in the following functions:

* Inthe TO_CHAR function to translate a value of NUMBER, BINARY_FLOAT, or
BINARY_DOUBLE data type to VARCHAR2 data type

e In the TO_NUMBER function to translate a value of CHAR or VARCHAR2 data type to NUMBER
data type

* Inthe TO_BINARY_FLOAT and TO_BINARY_DOUBLE functions to translate CHAR and
VARCHAR2 expressions to BINARY_FLOAT or BINARY_DOUBLE values

All number format models cause the number to be rounded to the specified number of
significant digits. If a value has more significant digits to the left of the decimal place
than are specified in the format, then pound signs (#) replace the value. This event
typically occurs when you are using TO_CHAR with a restrictive number format string,
causing a rounding operation.

» If a positive NUMBER value is extremely large and cannot be represented in the
specified format, then the infinity sign (~) replaces the value. Likewise, if a
negative NUMBER value is extremely small and cannot be represented by the
specified format, then the negative infinity sign replaces the value (-~).

e If a BINARY_FLOAT or BINARY_DOUBLE value is converted to CHAR or NCHAR, and the input
is either infinity or NaN (not a number), then Oracle always returns the pound signs
to replace the value. However, if you omit the format model, then Oracle returns
either Inf or Nan as a string.

2.4.1.1 Number Format Elements

A number format model is composed of one or more number format elements. The
tables that follow list the elements of a number format model and provide some
examples.

Negative return values automatically contain a leading negative sign and positive
values automatically contain a leading space unless the format model contains the mI,
S, or PR format element.

Table 2-15 Number Format Elements
]

Element Example Description
, (comma) 9,999 Returns a comma in the specified position. You can specify multiple commas in a
number format model.
Restrictions:
* A comma element cannot begin a number format model.
A comma cannot appear to the right of a decimal character or period in a
number format model.
. (period) 99.99 Returns a decimal point, which is a period (.) in the specified position.

Restriction: You can specify only one period in a number format model.

ORACLE

2-68

Chapter 2
Format Models

Table 2-15 (Cont.) Number Format Elements
]

Element

Example

Description

$

$9999

Returns value with a leading dollar sign.

0

0999
9990

Returns leading zeros.
Returns trailing zeros.

9999

Returns value with the specified number of digits with a leading space if positive or
with a leading minus if negative. Leading zeros are blank, except for a zero value,
which returns a zero for the integer part of the fixed-point number.

B9999

Returns blanks for the integer part of a fixed-point number when the integer part is
zero (regardless of zeros in the format model).

C999

Returns in the specified position the ISO currency symbol (the current value of the
NLS_1SO_CURRENCY parameter).

99D99

Returns in the specified position the decimal character, which is the current value of
the NLS_NUMERIC_CHARACTER parameter. The default is a period (.).

Restriction: You can specify only one decimal character in a number format model.

EEEE

9.9EEEE

Returns a value using in scientific notation.

9G999

Returns in the specified position the group separator (the current value of the
NLS_NUMERIC_CHARACTER parameter). You can specify multiple group separators in a
number format model.

Restriction: A group separator cannot appear to the right of a decimal character or
period in a number format model.

L999

Returns in the specified position the local currency symbol (the current value of the
NLS_CURRENCY parameter).

Mi

9999MI

Returns negative value with a trailing minus sign (-).
Returns positive value with a trailing blank.

Restriction: The MI format element can appear only in the last position of a number
format model.

PR

9999PR

Returns negative value in <angle brackets>.
Returns positive value with a leading and trailing blank.

Restriction: The PR format element can appear only in the last position of a
number format model.

RN
m

RN
rn

Returns a value as Roman numerals in uppercase.
Returns a value as Roman numerals in lowercase.
Value can be an integer between 1 and 3999.

S9999
9999S

Returns negative value with a leading minus sign (-).
Returns positive value with a leading plus sign (+).
Returns negative value with a trailing minus sign (-).
Returns positive value with a trailing plus sign (+).

Restriction: The S format element can appear only in the first or last position of a
number format model.

ORACLE

2-69

Chapter 2
Format Models

Table 2-15 (Cont.) Number Format Elements
]

Element Example Description
™ ™ The text minimum number format model returns (in decimal output) the smallest
number of characters possible. This element is case insensitive.
The default is TM9, which returns the number in fixed notation unless the output
exceeds 64 characters. If the output exceeds 64 characters, then Oracle Database
automatically returns the number in scientific notation.
Restrictions:
* You cannot precede this element with any other element.
* You can follow this element only with one 9 or one E (or €), but not with any
combination of these. The following statement returns an error:
SELECT TO_CHAR(1234, *"TM9e") FROM DUAL;
U U9999 Returns in the specified position the Euro (or other) dual currency symbol,
determined by the current value of the NLS_DUAL_CURRENCY parameter.
Y, 999v99 Returns a value multiplied by 10" (and if necessary, round it up), where n is the
number of 9's after the V.
X XXXX Returns the hexadecimal value of the specified number of digits. If the specified
XXXX number is not an integer, then Oracle Database rounds it to an integer.
Restrictions:
* This element accepts only positive values or 0. Negative values return an error.
* You can precede this element only with O (which returns leading zeroes) or FM.
Any other elements return an error. If you specify neither 0 nor FM with X, then
the return always has one leading blank. Refer to the format model modifier FM
(page 2-79) for more information.
Table 2-16 (page 2-70) shows the results of the following query for different values of
nunber and ' fnt':
SELECT TO_CHAR(nunber , “fmt ™)
FROM DUAL;
Table 2-16 Results of Number Conversions
__|
number ‘fmt’ Result
-1234567890 9999999999S "1234567890-"
0 99.99 " 00"
+0.1 99.99 " 10"
-0.2 99.99 " -.20"
0 90.99 " 0.00"
+0.1 90.99 " 0.10"
-0.2 90.99 " -0.20°
0 9999 "0
1 9999 * -
0 B9999 "t
1 B9999 "1
0 B90.99 "
ORACLE 2-70

Chapter 2
Format Models

Table 2-16 (Cont.) Results of Number Conversions
|

number ‘fmt’ Result
+123.456 999.999 " 123.456"°
-123.456 999.999 "-123.456"
+123.456 FM999.009 "123.456"
+123.456 9.9EEEE " 1.2E+02"
+1E+123 9.9EEEE " 1.0E+123*
+123.456 FM9_9EEEE "1.2E+02"
+123.45 FM999.009 "123.45"°
+123.0 FM999.009 "123.00"
+123.45 L999.99 " $123.45"°
+123.45 FML999.99 "$123.45"
+1234567890 9999999999S "1234567890+"

2.4.2 Datetime Format Models

You can use datetime format models in the following functions:

* Inthe TO_* datetime functions to translate a character value that is in a format
other than the default format into a datetime value. (The T0_* datetime functions
are TO_DATE, TO_TIMESTAMP, and TO_TIMESTAMP_TZ.)

e Inthe TO_CHAR function to translate a datetime value into a character value that is in
a format other than the default format (for example, to print the date from an
application)

The total length of a datetime format model cannot exceed 22 characters.

The default datetime formats are specified either explicitly with the NLS session
parameters NLS_DATE_FORMAT, NLS_TIMESTAMP_FORMAT, and NLS_TIMESTAMP_TZ_FORMAT, or
implicitly with the NLS session parameter NLS_TERRITORY. You can change the default
datetime formats for your session with the ALTER SESSION statement.

See Also:

ALTER SESSION (page 11-86) and Oracle Database Globalization Support
Guide for information on the NLS parameters

2.4.2.1 Datetime Format Elements

ORACLE

A datetime format model is composed of one or more datetime format elements as
listed in Table 2-17 (page 2-72).

* For input format models, format items cannot appear twice, and format items that
represent similar information cannot be combined. For example, you cannot use
'SYYYY' and 'BC' in the same format string.

2-71

Chapter 2
Format Models

e The second column indicates whether the format element can be used in the TO_*
datetime functions. All format elements can be used in the TO_CHAR function.

* The following datetime format elements can be used in timestamp and interval
format models, but not in the original DATE format model: FF, TzD, TZH, TZM, and TZR.

e Many datetime format elements are padded with blanks or leading zeroes to a
specific length. Refer to the format model modifier FM (page 2-79) for more
information.

Note:

Oracle recommends that you use the 4-digit year element (YYYY) instead of the
shorter year elements for these reasons:

* The 4-digit year element eliminates ambiguity.

» The shorter year elements may affect query optimization because the year
is not known at query compile time and can only be determined at run
time.

2.4.2.1.1 Uppercase Letters in Date Format Elements

Capitalization in a spelled-out word, abbreviation, or Roman numeral follows
capitalization in the corresponding format element. For example, the date format
model 'DAY" produces capitalized words like 'MONDAY"; 'Day' produces '‘Monday'; and
‘day' produces 'monday'.

2.4.2.1.2 Punctuation and Character Literals in Datetime Format Models

You can include these characters in a date format model:
* Punctuation such as hyphens, slashes, commas, periods, and colons
* Character literals, enclosed in double quotation marks

These characters appear in the return value in the same location as they appear in the
format model.

Table 2-17 Datetime Format Elements

Element TO_* Description
datetime
functions?
Yes Punctuation and quoted text is reproduced in the result.

"text"

AD Yes

A.D.

AD indicator with or without periods.

ORACLE

2-72

Chapter 2
Format Models

Table 2-17 (Cont.) Datetime Format Elements

Element TO_* Description

datetime
functions?

A Yes Meridian indicator with or without periods.

AM.

BC Yes BC indicator with or without periods.

B.C.

cc Century.

SCC « Ifthe last 2 digits of a 4-digit year are between 01 and 99 (inclusive), then the

century is one greater than the first 2 digits of that year.

« Ifthe last 2 digits of a 4-digit year are 00, then the century is the same as the
first 2 digits of that year.

For example, 2002 returns 21; 2000 returns 20.

D Yes Day of week (1-7). This element depends on the NLS territory of the session.

DAY Yes Name of day.

DD Yes Day of month (1-31).

DDD Yes Day of year (1-366).

DL Yes Returns a value in the long date format, which is an extension of the Oracle
Database DATE format, determined by the current value of the NLS_DATE_FORMAT
parameter. Makes the appearance of the date components (day name, month
number, and so forth) depend on the NLS_TERRITORY and NLS_LANGUAGE parameters.
For example, in the AMERICAN_AMERICA locale, this is equivalent to specifying the
format "fmDay, Month dd, yyyy". In the GERMAN_GERMANY locale, it is equivalent to
specifying the format ‘fmDay, dd. Month yyyy'.

Restriction: You can specify this format only with the TS element, separated by
white space.

DS Yes Returns a value in the short date format. Makes the appearance of the date
components (day name, month number, and so forth) depend on the NLS_TERRITORY
and NLS_LANGUAGE parameters. For example, in the AMERICAN_AMERICA locale, this is
equivalent to specifying the format 'MM/DD/RRRR'. In the ENGLISH_UNITED_KINGDOM
locale, it is equivalent to specifying the format 'DD/MM/RRRR'.

Restriction: You can specify this format only with the TS element, separated by
white space.

DY Yes Abbreviated name of day.

E Yes Abbreviated era name (Japanese Imperial, ROC Official, and Thai Buddha
calendars).

EE Yes Full era name (Japanese Imperial, ROC Official, and Thai Buddha calendars).

ORACLE 2-73

Chapter 2
Format Models

Table 2-17 (Cont.) Datetime Format Elements
]

Element TO_* Description
datetime
functions?
FF [1..9] Yes Fractional seconds; no radix character is printed. Use the X format element to add
o the radix character. Use the numbers 1 to 9 after FF to specify the number of digits

in the fractional second portion of the datetime value returned. If you do not specify
a digit, then Oracle Database uses the precision specified for the datetime data type
or the data type's default precision. Valid in timestamp and interval formats, but not
in DATE formats.
Examples: "HH:MI:SS_FF"
SELECT TO_CHAR(SYSTIMESTAMP, *SS.FF3") from DUAL;

= Yes Returns a value with no leading or trailing blanks.
See Also: FM (page 2-79)

X Yes Requires exact matching between the character data and the format model.
See Also: FX (page 2-80)

HH Yes Hour of day (1-12).

HH12

HH24 Yes Hour of day (0-23).

m Calendar week of year (1-52 or 1-53), as defined by the ISO 8601 standard.
e A calendar week starts on Monday.
e The first calendar week of the year includes January 4.
» The first calendar week of the year may include December 29, 30 and 31.
e The last calendar week of the year may include January 1, 2, and 3.

1YYy 4-digit year of the year containing the calendar week, as defined by the ISO 8601
standard.

Iy Last 3, 2, or 1 digit(s) of the year containing the calendar week, as defined by the

Iy ISO 8601 standard.

|

J Yes Julian day; the number of days since January 1, 4712 BC. Number specified with J
must be integers.

Wi Yes Minute (0-59).

W Yes Month (01-12; January = 01).

WON Yes Abbreviated name of month.

MONTH Yes Name of month.

Pl Yes Meridian indicator with or without periods.

P.M.

ORACLE

2-74

Chapter 2
Format Models

Table 2-17 (Cont.) Datetime Format Elements
]

Element TO_* Description

datetime
functions?

0 Quarter of year (1, 2, 3, 4; January - March = 1).

R Yes Roman numeral month (I-XII; January = 1).

RR Yes Lets you store 20th century dates in the 21st century using only two digits.

See Also: The RR Datetime Format Element (page 2-77)

RRRR Yes Round year. Accepts either 4-digit or 2-digit input. If 2-digit, provides the same return
as RR. If you do not want this functionality, then enter the 4-digit year.

s Yes Second (0-59).

SSSSS Yes Seconds past midnight (0-86399).

TS Yes Returns a value in the short time format. Makes the appearance of the time
components (hour, minutes, and so forth) depend on the NLS_TERRITORY and
NLS_LANGUAGE initialization parameters.

Restriction: You can specify this format only with the DL or DS element, separated
by white space.

70 Yes Daylight saving information. The TZD value is an abbreviated time zone string with
daylight saving information. It must correspond with the region specified in TZR.
Valid in timestamp and interval formats, but not in DATE formats.

Example: PST (for US/Pacific standard time); PDT (for US/Pacific daylight time).

T7H Yes Time zone hour. (See TZM format element.) Valid in timestamp and interval formats,
but not in DATE formats.

Example: "HH:MI:SS.FFTZH:TZM".

TZM Yes Time zone minute. (See TZH format element.) Valid in timestamp and interval
formats, but not in DATE formats.
Example: "HH:MI:SS.FFTZH:TZM".

TR Yes Time zone region information. The value must be one of the time zone region hames
supported in the database. Valid in timestamp and interval formats, but not in DATE
formats.

Example: US/Pacific

m Week of year (1-53) where week 1 starts on the first day of the year and continues
to the seventh day of the year.

W Week of month (1-5) where week 1 starts on the first day of the month and ends on
the seventh.

X Yes Local radix character.

Example: "HH:MI:SSXFF".
Y. YYY Yes Year with comma in this position.
ORACLE’ 2.75

Chapter 2
Format Models

Table 2-17 (Cont.) Datetime Format Elements
]

Element TO_* Description
datetime
functions?
YEAR Year, spelled out; S prefixes BC dates with a minus sign (-).
SYEAR
YYYY Yes 4-digit year; S prefixes BC dates with a minus sign.
SYYYY
YYY Yes Last 3, 2, or 1 digit(s) of year.
YY
Y

ORACLE

Oracle Database converts strings to dates with some flexibility. For example, when the
TO_DATE function is used, a format model containing punctuation characters matches an
input string lacking some or all of these characters, provided each numerical element
in the input string contains the maximum allowed number of digits—for example, two
digits '05' for '"MM' or four digits '2007' for 'YYYY"'. The following statement does not
return an error:

SELECT TO_CHAR(TO_DATE("0207","MM/YY"), "MM/YY") FROM DUAL;

However, the following format string does return an error, because the FX (format
exact) format modifier requires an exact match of the expression and the format string:

SELECT TO_CHAR(TO_DATE("0207", “fxmm/yy"), "mm/yy") FROM DUAL;
SELECT TO_CHAR(TO_DATE("0207", "fxmm/yy'), "mm/yy") FROM DUAL;

*

ERROR at line 1:
ORA-01861: literal does not match format string

Any non-alphanumeric character is allowed to match the punctuation characters in the
format model. For example, the following statement does not return an error:

SELECT TO_CHAR (TO_DATE("02#07*",*MM/YY®), “MM/YY®™) FROM DUAL;

See Also:

Format Model Modifiers (page 2-79) and String-to-Date Conversion Rules
(page 2-82) for more information

2-76

Chapter 2
Format Models

2.4.2.2 Datetime Format Elements and Globalization Support

The functionality of some datetime format elements depends on the country and
language in which you are using Oracle Database. For example, these datetime
format elements return spelled values:

* MONTH
* MON

« DAY

« DY

e BCorADorB.C.or AD.
e AMor PMor AWM or P.M.

The language in which these values are returned is specified either explicitly with the
initialization parameter NLS_DATE_LANGUAGE or implicitly with the initialization parameter
NLS_LANGUAGE. The values returned by the YEAR and SYEAR datetime format elements are
always in English.

The datetime format element D returns the number of the day of the week (1-7). The
day of the week that is numbered 1 is specified implicitly by the initialization parameter
NLS_TERRITORY.

See Also:

Oracle Database Reference and Oracle Database Globalization Support
Guide for information on globalization support initialization parameters

2.4.2.3 1SO Standard Date Format Elements

Oracle calculates the values returned by the datetime format elements IYYY, IYY, 1Y,
I, and IW according to the ISO standard. For information on the differences between
these values and those returned by the datetime format elements YYYY, YYY, YY, Y,
and WW, see the discussion of globalization support in Oracle Database Globalization
Support Guide.

2.4.2.4 The RR Datetime Format Element

The RR datetime format element is similar to the YY datetime format element, but it
provides additional flexibility for storing date values in other centuries. The RR datetime
format element lets you store 20th century dates in the 21st century by specifying only
the last two digits of the year.

If you use the TO_DATE function with the Yy datetime format element, then the year
returned always has the same first 2 digits as the current year. If you use the RR
datetime format element instead, then the century of the return value varies according
to the specified two-digit year and the last two digits of the current year.

That is:

» If the specified two-digit year is 00 to 49, then

ORACLE -

Chapter 2
Format Models

— If the last two digits of the current year are 00 to 49, then the returned year has
the same first two digits as the current year.

— If the last two digits of the current year are 50 to 99, then the first 2 digits of the
returned year are 1 greater than the first 2 digits of the current year.

» If the specified two-digit year is 50 to 99, then

— If the last two digits of the current year are 00 to 49, then the first 2 digits of the
returned year are 1 less than the first 2 digits of the current year.

— If the last two digits of the current year are 50 to 99, then the returned year has
the same first two digits as the current year.

The following examples demonstrate the behavior of the RR datetime format element.

2.4.2.4.1 RR Datetime Format Examples

Assume these queries are issued between 1950 and 1999:

SELECT TO_CHAR(TO_DATE("27-0CT-98%, "DD-MON-RR®), "YYYY") "Year"™ FROM DUAL;

Year

1998
SELECT TO_CHAR(TO_DATE("27-0CT-17", "DD-MON-RR"), "YYYY") "Year" FROM DUAL;
Year

2017

Now assume these queries are issued between 2000 and 2049:

SELECT TO_CHAR(TO_DATE("27-0CT-98", "DD-MON-RR"), "YYYY") "Year" FROM DUAL;
Year
1998
SELECT TO_CHAR(TO_DATE("27-0CT-17", "DD-MON-RR"), "YYYY") "Year" FROM DUAL;
Year

2017

Note that the queries return the same values regardless of whether they are issued
before or after the year 2000. The RR datetime format element lets you write SQL
statements that will return the same values from years whose first two digits are
different.

2.4.2.5 Datetime Format Element Suffixes

Table 2-18 (page 2-79) lists suffixes that can be added to datetime format elements:

ORACLE 2-78

Chapter 2
Format Models

Table 2-18 Date Format Element Suffixes

Suffix Meaning Example Element Example Value
TH Ordinal Number DDTH 4TH

SP Spelled Number DDSP FOUR

SPTH or THSP Spelled, ordinal number DDSPTH FOURTH

Notes on date format element suffixes:

* When you add one of these suffixes to a datetime format element, the return value
is always in English.

» Datetime suffixes are valid only to format output. You cannot use them to insert a
date into the database.

2.4.3 Format Model Modifiers

ORACLE

The FM and FX modifiers, used in format models in the TO_CHAR function, control blank
padding and exact format checking.

A modifier can appear in a format model more than once. In such a case, each
subsequent occurrence toggles the effects of the modifier. Its effects are enabled for
the portion of the model following its first occurrence, and then disabled for the portion
following its second, and then reenabled for the portion following its third, and so on.

FM

Fill mode. Oracle uses trailing blank characters and leading zeroes to fill format
elements to a constant width. The width is equal to the display width of the largest
element for the relevant format model:

* Numeric elements are padded with leading zeros to the width of the maximum
value allowed for the element. For example, the YYYY element is padded to four
digits (the length of '9999"), HH24 to two digits (the length of '23"), and DDD to three
digits (the length of '366").

e The character elements MONTH, MON, DAY, and DY are padded with trailing blanks to
the width of the longest full month name, the longest abbreviated month name, the
longest full date name, or the longest abbreviated day name, respectively, among
valid names determined by the values of NLS_DATE_LANGUAGE and NLS_CALENDAR
parameters. For example, when NLS_DATE_LANGUAGE is AMERICAN and NLS_CALENDAR is
GREGORIAN (the default), the largest element for MONTH is SEPTEMBER, so all values of
the MONTH format element are padded to nine display characters. The values of the
NLS_DATE_LANGUAGE and NLS_CALENDAR parameters are specified in the third argument
to TO_CHAR and TO_* datetime functions or they are retrieved from the NLS
environment of the current session.

* The character element RM is padded with trailing blanks to the length of 4, which
is the length of ‘viii'.

e Other character elements and spelled-out numbers (SP, SPTH, and THSP suffixes)
are not padded.

The FM modifier suppresses the above padding in the return value of the TO_CHAR
function.

2-79

Chapter 2
Format Models

FX

Format exact. This modifier specifies exact matching for the character argument and
datetime format model of a TO_DATE function:

* Punctuation and quoted text in the character argument must exactly match (except
for case) the corresponding parts of the format model.

* The character argument cannot have extra blanks. Without FX, Oracle ignores
extra blanks.

* Numeric data in the character argument must have the same number of digits as
the corresponding element in the format model. Without FX, numbers in the
character argument can omit leading zeros.

When FX is enabled, you can disable this check for leading zeros by using the FM
modifier as well.

If any portion of the character argument violates any of these conditions, then Oracle
returns an error message.

2.4.3.1 Format Model Examples

ORACLE

The following statement uses a date format model to return a character expression:

SELECT TO_CHAR(SYSDATE, *fmDDTH®) || * of " ||
TO_CHAR(SYSDATE, *fmMonth*) || *. * ||
TO_CHAR(SYSDATE, "YYYY') "lIdes"

FROM DUAL;

3RD of April, 2008

The preceding statement also uses the FM modifier. If FM is omitted, then the month is
blank-padded to nine characters:

SELECT TO_CHAR(SYSDATE, *DDTH') || * of " ||
TO_CHAR(SYSDATE, *Month*) || *. " |l
TO_CHAR(SYSDATE, "YYYY') "lIdes"

FROM DUAL;

03RD of April , 2008

The following statement places a single quotation mark in the return value by using a
date format model that includes two consecutive single quotation marks:

SELECT TO_CHAR(SYSDATE, “fmDay") || """s Special® "Menu"
FROM DUAL;

Tuesday®s Special

Two consecutive single quotation marks can be used for the same purpose within a
character literal in a format model.

2-80

Chapter 2
Format Models

Table 2-19 (page 2-81) shows whether the following statement meets the matching
conditions for different values of char and 'f nt ' using FX (the table named table has a
column date_column of data type DATE):

UPDATE table
SET date_column = TO_DATE(char, *fnt*®);

Table 2-19 Matching Character Data and Format Models with the FX Format
Model Modifier

char ‘fmt’ Match or Error?
"15/ JAN /1998" “DD-MON-YYYY*" Match
" 151 JAN % /1998" “DD-MON-YYYY*® Error
"15/JAN/1998" "FXDD-MON-YYYY*™ Error
"15-JAN-1998" “FXDD-MON-YYYY*™ Match
"1-JAN-1998" "FXDD-MON-YYYY*™ Error
"01-JAN-1998* "FXDD-MON-YYYY*™ Match
"1-JAN-1998" "FXFMDD-MON-YYYY*™ Match

Format of Return Values: Examples

You can use a format model to specify the format for Oracle to use to return values
from the database to you.

The following statement selects the salaries of the employees in Department 80 and
uses the TO_CHAR function to convert these salaries into character values with the
format specified by the number format model '$99,990.99":

SELECT last_name employee, TO_CHAR(salary, "$99,990.99%)
FROM employees
WHERE department_id = 80;

Because of this format model, Oracle returns salaries with leading dollar signs,
commas every three digits, and two decimal places.

The following statement selects the date on which each employee from Department 20
was hired and uses the TO_CHAR function to convert these dates to character strings
with the format specified by the date format model ‘fmMonth DD, YYYY"

SELECT last_name employee, TO_CHAR(hire_date, "fmMonth DD, YYYY") hiredate
FROM employees
WHERE department_id = 20;

With this format model, Oracle returns the hire dates without blank padding (as
specified by fm), two digits for the day, and the century included in the year.

See Also:

Format Model Modifiers (page 2-79) for a description of the fm format element

ORACLE 2-81

Chapter 2
Format Models

Supplying the Correct Format Model: Examples

When you insert or update a column value, the data type of the value that you specify
must correspond to the column data type of the column. You can use format models to
specify the format of a value that you are converting from one data type to another
data type required for a column.

For example, a value that you insert into a DATE column must be a value of the DATE
data type or a character string in the default date format (Oracle implicitly converts
character strings in the default date format to the DATE data type). If the value is in
another format, then you must use the T0_DATE function to convert the value to the DATE
data type. You must also use a format model to specify the format of the character
string.

The following statement updates Hunold"s hire date using the TO_DATE function with the
format mask 'YYYY MM DD’ to convert the character string ‘2008 05 20' to a DATE
value:

UPDATE employees
SET hire_date = TO_DATE("2008 05 20","YYYY MM DD")
WHERE last_name = "Hunold";

2.4.4 String-to-Date Conversion Rules

ORACLE

The following additional formatting rules apply when converting string values to date
values (unless you have used the FX or FXFM modifiers in the format model to control
exact format checking):

e You can omit punctuation included in the format string from the date string if all the
digits of the numerical format elements, including leading zeros, are specified. For
example, specify 02 and not 2 for two-digit format elements such as MM, DD, and
YY.

e You can omit time fields found at the end of a format string from the date string.

e You can use any non-alphanumeric character in the date string to match the
punctuation symbol in the format string.

e If a match fails between a datetime format element and the corresponding
characters in the date string, then Oracle attempts alternative format elements, as
shown in Table 2-20 (page 2-82).

Table 2-20 Oracle Format Matching

. __|
Original Format Element Additional Format Elements to Try in Place of the Original

"MON® and "MONTH"

M
"MON "MONTH*®
"MONTH*® "MON*®

"Yy*" "YYYY*®
"RR*® "RRRR*

2-82

Chapter 2
Format Models

2.4.5 XML Format Model

The SYS_XMLAgg and SYS_XMLGen (deprecated) functions return an instance of type
XMLType containing an XML document. Oracle provides the XMLFormat object, which lets
you format the output of these functions.

Table 2-21 (page 2-83) lists and describes the attributes of the XMLFormat object. The
function that implements this type follows the table.

See Also:

e SYS_XMLAGG (page 7-344) for information on the SYS_XMLAgg function

* SYS_XMLGEN (page 7-345) for information on the SYS_XMLGen function

e Oracle XML DB Developer’s Guide for more information on the
implementation of the XMLFormat object and its use

Table 2-21 Attributes of the XMLFormat Object
]

Attribute Data Type Purpose
enclTag VARCHAR2(4000) or The name of the enclosing tag for the result of the SYS_XMLAgg or
VARCHAR2(32767)1 SYS_XMLGen (deprecated) function.
SYS_XMLAgg: The default is ROWSET.
SYS_XMLGen: If the input to the function is a column name, then the
default is the column name. Otherwise the default is ROW. When
schemaType is set to USE_GIVEN_SCHEMA, this attribute also gives
the name of the XMLSchema element.
schemaType VARCHAR2(100) The type of schema generation for the output document. Valid
values are 'NO_SCHEMA' and 'USE_GIVEN_SCHEMA'. The default is
'NO_SCHEMA'.
schemaName VARCHAR2(4000) or The name of the target schema Oracle uses if the value of the
VARCHAR2(32767)1 schemaType is 'USE_GIVEN_SCHEMA'. If you specify schemaName, then
Oracle uses the enclosing tag as the element name.
targetNameSpace VARCHAR2(4000) or The target namespace if the schema is specified (that is,
VARCHAR2(32767)1 schemaType is GEN_SCHEMA_*, or USE_GIVEN_SCHEMA)
dburlPrefix VARCHAR2(4000) or The URL to the database to use if WITH_SCHEMA is specified. If this
VARCHAR2(32767)1 attribute is not specified, then Oracle declares the URL to the
types as a relative URL reference.
processinglns VARCHAR2(4000) or User-provided processing instructions, which are appended to the

VARCHAR2(32767)1

top of the function output before the element.

1 The data type for this attribute is VARCHAR2(4000) if the initialization parameter MAX_STRING_SIZE = STANDARD, and
VARCHAR2(32767) if MAX_STRING_SIZE = EXTENDED. See Extended Data Types (page 2-32) for more information.

ORACLE

The function that implements the XMLFormat object follows:

STATIC FUNCTION createFormat(
enclTag IN varchar2 :

= "ROWSET",

schemaType IN varchar2 := "NO_SCHEMA®,
schemaName IN varchar2 := null,

2-83

Chapter 2
Nulls

targetNameSpace IN varchar2 := null,

dburlPrefix IN varchar2 := null,

processinglns IN varchar2 := null) RETURN XMLGenFormatType

deterministic parallel_enable,

MEMBER PROCEDURE genSchema (spec IN varchar2),
MEMBER PROCEDURE setSchemaName(schemaName IN varchar?2),
MEMBER PROCEDURE setTargetNameSpace(targetNameSpace IN varchar2),
MEMBER PROCEDURE setEnclosingElementName(enclTag IN varchar2),
MEMBER PROCEDURE setDbUrlPrefix(prefix IN varchar?),
MEMBER PROCEDURE setProcessinglns(pi IN varchar2),
CONSTRUCTOR FUNCTION XMLGenFormatType (

enclTag IN varchar2 := "ROWSET",

schemaType IN varchar2 := "NO_SCHEMA®,

schemaName IN varchar2 := null,

targetNameSpace IN varchar2 := null,

dbUrlPrefix IN varchar2 := null,

processinglns IN varchar2 := null) RETURN SELF AS RESULT

deterministic parallel_enable,
STATIC function createFormat2(

enclTag in varchar2 := "ROWSET",

flags in raw) return sys.xmlgenformattype

deterministic parallel_enable

);

2.5 Nulls

If a column in a row has no value, then the column is said to be null, or to contain null.
Nulls can appear in columns of any data type that are not restricted by NOT NULL or
PRIMARY KEY integrity constraints. Use a null when the actual value is not known or
when a value would not be meaningful.

Oracle Database treats a character value with a length of zero as null. However, do
not use null to represent a numeric value of zero, because they are not equivalent.

Note:

Oracle Database currently treats a character value with a length of zero as
null. However, this may not continue to be true in future releases, and Oracle
recommends that you do not treat empty strings the same as nulls.

Any arithmetic expression containing a null always evaluates to null. For example, null
added to 10 is null. In fact, all operators (except concatenation) return null when given
a null operand.

2.5.1 Nulls in SQL Functions

For information on null handling in SQL functions, see Nulls in SQL Functions
(page 7-2).

2.5.2 Nulls with Comparison Conditions

To test for nulls, use only the comparison conditions 1S NULL and 1S NOT NULL. If you use
any other condition with nulls and the result depends on the value of the null, then the

ORACLE 2-84

Chapter 2
Comments

result is UNKNOWN. Because null represents a lack of data, a null cannot be equal or
unequal to any value or to another null. However, Oracle considers two nulls to be
equal when evaluating a DECODE function. Refer to DECODE (page 7-102) for syntax
and additional information.

Oracle also considers two nulls to be equal if they appear in compound keys. That is,
Oracle considers identical two compound keys containing nulls if all the non-null
components of the keys are equal.

2.5.3 Nulls in Conditions

A condition that evaluates to UNKNOWN acts almost like FALSE. For example, a SELECT
statement with a condition in the WHERE clause that evaluates to UNKNOWN returns no
rows. However, a condition evaluating to UNKNOWN differs from FALSE in that further
operations on an UNKNOWN condition evaluation will evaluate to UNKNOWN. Thus, NOT FALSE
evaluates to TRUE, but NOT UNKNOWN evaluates to UNKNOWN.

Table 2-22 (page 2-85) shows examples of various evaluations involving nulls in
conditions. If the conditions evaluating to UNKNOWN were used in a WHERE clause of a
SELECT statement, then no rows would be returned for that query.

Table 2-22 Conditions Containing Nulls
|

Condition Value of A Evaluation
a IS NULL 10 FALSE
a IS NOT NULL 10 TRUE

a IS NULL NULL TRUE

a IS NOT NULL NULL FALSE
a = NULL 10 UNKNOWN
a 1= NULL 10 UNKNOWN
a = NULL NULL UNKNOWN
a 1= NULL NULL UNKNOWN
a =10 NULL UNKNOWN
a =10 NULL UNKNOWN

For the truth tables showing the results of logical conditions containing nulls, see
Table 6-5 (page 6-9), Table 6-6 (page 6-9), and Table 6-7 (page 6-10).

2.6 Comments

ORACLE

You can create two types of comments:

* Comments within SQL statements are stored as part of the application code that
executes the SQL statements.

* Comments associated with individual schema or nonschema objects are stored in
the data dictionary along with metadata on the objects themselves.

2-85

Chapter 2
Comments

2.6.1 Comments Within SQL Statements

ORACLE

Comments can make your application easier for you to read and maintain. For
example, you can include a comment in a statement that describes the purpose of the
statement within your application. With the exception of hints, comments within SQL
statements do not affect the statement execution. Refer to Hints (page 2-87) on using
this particular form of comment.

A comment can appear between any keywords, parameters, or punctuation marks in a
statement. You can include a comment in a statement in two ways:

e Begin the comment with a slash and an asterisk (/*). Proceed with the text of the
comment. This text can span multiple lines. End the comment with an asterisk and
a slash (*/). The opening and terminating characters need not be separated from
the text by a space or a line break.

e Begin the comment with -- (two hyphens). Proceed with the text of the comment.
This text cannot extend to a new line. End the comment with a line break.

Some of the tools used to enter SQL have additional restrictions. For example, if you
are using SQL*Plus, by default you cannot have a blank line inside a multiline
comment. For more information, refer to the documentation for the tool you use as an
interface to the database.

A SQL statement can contain multiple comments of both styles. The text of a comment
can contain any printable characters in your database character set.

Example
These statements contain many comments:

SELECT last_name, employee_id, salary + NVL(commission_pct, 0),
job_id, e.department_id
/* Select all employees whose compensation is
greater than that of Pataballa.*/
FROM employees e, departments d
/*The DEPARTMENTS table is used to get the department name.*/
WHERE e.department_id = d.department_id
AND salary + NVL(commission_pct,0) > /* Subquery: */
(SELECT salary + NVL(commission_pct,0)
/* total compensation is salary + commission_pct */
FROM employees
WHERE last_name = "Pataballa™)
ORDER BY last_name, employee_id;

SELECT last_name, -- select the name
employee_id -- employee id
salary + NVL(commission_pct, 0), -- total compensation
job_id, -- job
e.department_id -- and department
FROM employees e, -- of all employees

departments d
WHERE e.department_id = d.department_id

AND salary + NVL(commission_pct, 0) > -- whose compensation
-- Is greater than
(SELECT salary + NVL(commission_pct,0) -- the compensation
FROM employees
WHERE last_name = "Pataballa®) -- of Pataballa
ORDER BY last_name -- and order by last name

2-86

Chapter 2
Comments

employee_id -- and employee id.

2.6.2 Comments on Schema and Nonschema Objects

2.6.3 Hints

ORACLE

You can use the COMMENT command to associate a comment with a schema object
(table, view, materialized view, operator, indextype, mining model) or a nonschema
object (edition) using the COMMENT command. You can also create a comment on a
column, which is part of a table schema object. Comments associated with schema
and nonschema objects are stored in the data dictionary. Refer to COMMENT
(page 12-250) for a description of this form of comment.

Hints are comments in a SQL statement that pass instructions to the Oracle Database
optimizer. The optimizer uses these hints to choose an execution plan for the
statement, unless some condition exists that prevents the optimizer from doing so.

Hints were introduced in Oracle7, when users had little recourse if the optimizer
generated suboptimal plans. Now Oracle provides a number of tools, including the
SQL Tuning Advisor, SQL plan management, and SQL Performance Analyzer, to help
you address performance problems that are not solved by the optimizer. Oracle
strongly recommends that you use those tools rather than hints. The tools are far
superior to hints, because when used on an ongoing basis, they provide fresh
solutions as your data and database environment change.

Hints should be used sparingly, and only after you have collected statistics on the
relevant tables and evaluated the optimizer plan without hints using the EXPLAIN PLAN
statement. Changing database conditions as well as query performance
enhancements in subsequent releases can have significant impact on how hints in
your code affect performance.

The remainder of this section provides information on some commonly used hints. If
you decide to use hints rather than the more advanced tuning tools, be aware that any
short-term benefit resulting from the use of hints may not continue to result in
improved performance over the long term.

Using Hints

A statement block can have only one comment containing hints, and that comment
must follow the SELECT, UPDATE, INSERT, MERGE, or DELETE keyword.

The following syntax diagram shows hints contained in both styles of comments that
Oracle supports within a statement block. The hint syntax must follow immediately
after an INSERT, UPDATE, DELETE, SELECT, or MERGE keyword that begins the statement
block.

hint::=

'.string I
*/
|
(=-H—~(hint

2-87

Chapter 2
Comments

where:

e The plus sign (+) causes Oracle to interpret the comment as a list of hints. The
plus sign must follow immediately after the comment delimiter. No space is
permitted.

e hint is one of the hints discussed in this section. The space between the plus sign
and the hint is optional. If the comment contains multiple hints, then separate the
hints by at least one space.

e string is other commenting text that can be interspersed with the hints.

The --+ syntax requires that the entire comment be on a single line.

Oracle Database ignores hints and does not return an error under the following
circumstances:

e The hint contains misspellings or syntax errors. However, the database does
consider other correctly specified hints in the same comment.

e The comment containing the hint does not follow a DELETE, INSERT, MERGE, SELECT, or
UPDATE keyword.

* A combination of hints conflict with each other. However, the database does
consider other hints in the same comment.

e The database environment uses PL/SQL version 1, such as Forms version 3
triggers, Oracle Forms 4.5, and Oracle Reports 2.5.

e A global hint refers to multiple query blocks. Refer to Specifying Multiple Query
Blocks in a Global Hint (page 2-89) for more information.

Specifying a Query Block in a Hint

You can specify an optional query block name in many hints to specify the query block
to which the hint applies. This syntax lets you specify in the outer query a hint that
applies to an inline view.

The syntax of the query block argument is of the form @quer ybl ock, where quer ybl ock is
an identifier that specifies a query block in the query. The querybl ock identifier can
either be system-generated or user-specified. When you specify a hint in the query
block itself to which the hint applies, you omit the @uer ybl ock syntax.

* The system-generated identifier can be obtained by using EXPLAIN PLAN for the
query. Pretransformation query block names can be determined by running
EXPLAIN PLAN for the query using the NO_QUERY_TRANSFORMATION hint. See
NO_QUERY_TRANSFORMATION Hint (page 2-118).

* The user-specified name can be set with the QB_NAME hint. See QB_NAME Hint
(page 2-131).

Specifying Global Hints

Many hints can apply both to specific tables or indexes and more globally to tables
within a view or to columns that are part of indexes. The syntactic elements t abl espec
and i ndexspec define these global hints.

ORACLE 2-88

Chapter 2
Comments

tablespec::=

e}

X table }»

You must specify the table to be accessed exactly as it appears in the statement. If the
statement uses an alias for the table, then use the alias rather than the table name in
the hint. However, do not include the schema name with the table name within the
hint, even if the schema name appears in the statement.

Note:

Specifying a global hint using the t abl espec clause does not work for queries
that use ANSI joins, because the optimizer generates additional views during
parsing. Instead, specify @quer ybl ock to indicate the query block to which the
hint applies.

indexspec::=

index

|
(column

When t abl espec is followed by i ndexspec in the specification of a hint, a comma
separating the table name and index name is permitted but not required. Commas are
also permitted, but not required, to separate multiple occurrences of i ndexspec.

Specifying Multiple Query Blocks in a Global Hint

Oracle Database ignores global hints that refer to multiple query blocks. To avoid this
issue, Oracle recommends that you specify the object alias in the hint instead of using
t abl espec and i ndexspec.

For example, consider the following view v and table t:

CREATE VIEW v AS
SELECT e.last_name, e.department_id, d.location_id
FROM employees e, departments d
WHERE e.department_id = d.department_id;

CREATE TABLE t AS

SELECT * from employees
WHERE employee_id < 200;

ORACLE 2-89

Chapter 2
Comments

Note:

The following examples use the EXPLAIN PLAN statement, which enables you to
display the execution plan and determine if a hint is honored or ignored. Refer
to EXPLAIN PLAN (page 18-17) for more information.

The LEADING hint is ignored in the following query because it refers to multiple query
blocks, that is, the main query block containing table t and the view query block v:

EXPLAIN PLAN
SET STATEMENT_ID = "Test 1"
INTO plan_table FOR
(SELECT /*+ LEADING(v.e v.d t) */ *
FROM t, v
WHERE t._department_id = v.department_id);

The following SELECT statement returns the execution plan, which shows that the
LEADING hint was ignored:

SELECT id, LPAD(" ",2*(LEVEL-1))]|]operation operation, options, object name,
object_alias

FROM plan_table

START WITH id = O AND statement_id = "Test 1°

CONNECT BY PRIOR id = parent_id AND statement_id = "Test 1"

ORDER BY id;

ID OPERATION OPTIONS OBJECT_NAME OBJECT_ALIAS
0 SELECT STATEMENT

1 HASH JOIN

2 HASH JOIN

3 TABLE ACCESS FULL DEPARTMENTS D@SEL$2

4 TABLE ACCESS FULL EMPLOYEES E@QSEL$2

5 TABLE ACCESS FULL T T@SEL$1

The LEADING hint is honored in the following query because it refers to object aliases,
which can be found in the execution plan that was returned by the previous query:

EXPLAIN PLAN
SET STATEMENT_ID = "Test 2*°
INTO plan_table FOR
(SELECT /*+ LEADING(E@SEL$2 D@SEL$2 T@SEL$1) */ *
FROM t, v
WHERE t.department_id = v.department_id);

The following SELECT statement returns the execution plan, which shows that the
LEADING hint was honored:

SELECT id, LPAD(" ",2*(LEVEL-1))]|operation operation, options,
object_name, object alias
FROM plan_table
START WITH id = O AND statement_id = "Test 2"
CONNECT BY PRIOR id = parent_id AND statement_id = "Test 2"
ORDER BY id;

ID OPERATION OPTIONS OBJECT_NAME ~ OBJECT_ALIAS

0 SELECT STATEMENT

ORACLE 2-90

ORACLE

HASH JOIN
HASH JOIN
TABLE ACCESS
TABLE ACCESS
TABLE ACCESS

g b wnN R

See Also:

Chapter 2
Comments

FULL EMPLOYEES EQSEL$2
FULL DEPARTMENTS D@SEL$2
FULL T TOSEL$1

Oracle Database SQL Tuning Guide for more information on using EXPLAIN
PLAN to learn how the optimizer is executing a query

Hints by Functional Category

Table 2-23 (page 2-91) lists the hints by functional category and contains cross-
references to the syntax and semantics for each hint. An alphabetical reference of the

hints follows the table.

Table 2-23 Hints by Functional Category

Hint

Link to Syntax and Semantics

Optimization Goals and
Approaches

ALL_ROWS Hint (page 2-94)
FIRST_ROWS Hint (page 2-100)

Access Path Hints

CLUSTER Hint (page 2-96)

CLUSTERING Hint (page 2-97)
NO_CLUSTERING Hint (page 2-111)

FULL Hint (page 2-101)

HASH Hint (page 2-102)

INDEX Hint (page 2-104)
NO_INDEX Hint (page 2-112)

INDEX_ASC Hint (page 2-104)
INDEX_DESC Hint (page 2-105)

INDEX_COMBINE Hint (page 2-105)

INDEX_JOIN Hint (page 2-106)

INDEX_FFS Hint (page 2-106)

INDEX_SS Hint (page 2-106)

INDEX_SS_ASC Hint (page 2-107)

INDEX_SS_DESC Hint (page 2-107)

NATIVE_FULL_OUTER_JOIN Hint (page 2-110)
NO_NATIVE_FULL_OUTER_JOIN Hint (page 2-115)

NO_INDEX_FFS Hint (page 2-113)

NO_INDEX_SS Hint (page 2-113)

NO_ZONEMAP Hint (page 2-122)

In-Memory Column Store
Hints

INMEMORY Hint (page 2-108)
NO_INMEMORY Hint (page 2-114)

2-91

ORACLE

Chapter 2
Comments

Table 2-23 (Cont.) Hints by Functional Category

Hint

Link to Syntax and Semantics

INMEMORY_PRUNING Hint (page 2-108)
NO_INMEMORY_PRUNING Hint (page 2-114)

Join Order Hints

ORDERED Hint (page 2-123)

LEADING Hint (page 2-108)

Join Operation Hints

USE_BAND Hint (page 2-135)
NO_USE_BAND Hint (page 2-120)

USE_CUBE Hint (page 2-136)
NO_USE_CUBE Hint (page 2-120)

USE_HASH Hint (page 2-136)
NO_USE_HASH Hint (page 2-120)

USE_MERGE Hint (page 2-136)
NO_USE_MERGE Hint (page 2-121)

USE_NL Hint (page 2-137)
USE_NL_WITH_INDEX Hint (page 2-137)
NO_USE_NL Hint (page 2-121)

Parallel Execution Hints

ENABLE_PARALLEL_DML Hint (page 2-99)
DISABLE_PARALLEL_DML Hint (page 2-98)

PARALLEL Hint (page 2-124)
NO_PARALLEL Hint (page 2-115)

PARALLEL_INDEX Hint (page 2-126)
NO_PARALLEL_INDEX Hint (page 2-116)

PQ_CONCURRENT_UNION Hint (page 2-127)
NO_PQ_CONCURRENT_UNION Hint (page 2-116)

PQ_DISTRIBUTE Hint (page 2-127)

PQ_FILTER Hint (page 2-130)

PQ_SKEW Hint (page 2-130)
NO_PQ_SKEW Hint (page 2-117)

Online Application
Upgrade Hints

CHANGE_DUPKEY_ERROR_INDEX Hint (page 2-96)

IGNORE_ROW_ON_DUPKEY_INDEX Hint (page 2-103)

RETRY_ON_ROW_CHANGE Hint (page 2-132)

Query Transformation
Hints

FACT Hint (page 2-100)
NO_FACT Hint (page 2-112)

MERGE Hint (page 2-109)
NO_MERGE Hint (page 2-114)

NO_EXPAND Hint (page 2-111)
USE_CONCAT Hint (page 2-135)

REWRITE Hint (page 2-133)
NO_REWRITE Hint (page 2-118)

2-92

Chapter 2
Comments

Table 2-23 (Cont.) Hints by Functional Category

__|
Hint Link to Syntax and Semantics

- UNNEST Hint (page 2-134)
NO_UNNEST Hint (page 2-120)

- STAR_TRANSFORMATION Hint (page 2-133)
NO_STAR_TRANSFORMATION Hint (page 2-119)

- NO_QUERY_TRANSFORMATION Hint (page 2-118)

XML Hints NO_XMLINDEX_REWRITE Hint (page 2-122)
- NO_XML_QUERY_REWRITE Hint (page 2-121)
Other Hints APPEND Hint (page 2-94)

APPEND_VALUES Hint (page 2-95)
NOAPPEND Hint (page 2-110)

-- CACHE Hint (page 2-95)
NOCACHE Hint (page 2-111)

- CONTAINERS Hint (page 2-97)

- CURSOR_SHARING_EXACT Hint (page 2-98)

- DRIVING_SITE Hint (page 2-98)

- DYNAMIC_SAMPLING Hint (page 2-99)
FRESH_MV Hint (page 2-101)

- GATHER_OPTIMIZER_STATISTICS Hint (page 2-102)
NO_GATHER_OPTIMIZER_STATISTICS Hint (page 2-112)

GROUPING Hint (page 2-102)
-- MODEL_MIN_ANALYSIS Hint (page 2-109)
-- MONITOR Hint (page 2-110)
- NO_MONITOR Hint (page 2-115)
- OPT_PARAM Hint (page 2-123)

-- PUSH_PRED Hint (page 2-130)
NO_PUSH_PRED Hint (page 2-117)

-- PUSH_SUBQ Hint (page 2-131)
NO_PUSH_SUBQ Hint (page 2-117)

- PX_JOIN_FILTER Hint (page 2-131)
NO_PX_JOIN_FILTER Hint (page 2-118)

-- QB_NAME Hint (page 2-131)

. RESULT_CACHE Hint (page 2-132)
NO_RESULT_CACHE Hint (page 2-118)

2.6.4 Alphabetical Listing of Hints

This section provides syntax and semantics for all hints in alphabetical order.

ORACLE 2-93

Chapter 2
Comments

2.6.4.1 ALL_ROWS Hint

PR (D)

The ALL_ROWS hint instructs the optimizer to optimize a statement block with a goal of
best throughput, which is minimum total resource consumption. For example, the
optimizer uses the query optimization approach to optimize this statement for best
throughput:

SELECT /*+ ALL_ROWS */ employee_id, last_name, salary, job_id
FROM employees
WHERE employee_id = 107;

If you specify either the ALL_ROWS or the FIRST_ROWS hint in a SQL statement, and if the
data dictionary does not have statistics about tables accessed by the statement, then
the optimizer uses default statistical values, such as allocated storage for such tables,
to estimate the missing statistics and to subsequently choose an execution plan.
These estimates might not be as accurate as those gathered by the DBMS_STATS
package, so you should use the DBMS_STATS package to gather statistics.

If you specify hints for access paths or join operations along with either the ALL_ROWS or
FIRST_ROWS hint, then the optimizer gives precedence to the access paths and join
operations specified by the hints.

2.6.4.2 APPEND Hint

ORACLE

OILETO

The APPEND hint instructs the optimizer to use direct-path INSERT with the subquery
syntax of the INSERT statement.

» Conventional INSERT is the default in serial mode. In serial mode, direct path can
be used only if you include the APPEND hint.

» Direct-path INSERT is the default in parallel mode. In parallel mode, conventional
insert can be used only if you specify the NOAPPEND hint.

The decision whether the INSERT will go parallel or not is independent of the APPEND
hint.

In direct-path INSERT, data is appended to the end of the table, rather than using
existing space currently allocated to the table. As a result, direct-path INSERT can be
considerably faster than conventional INSERT.

The APPEND hint is only supported with the subquery syntax of the INSERT statement, not
the VALUES clause. If you specify the APPEND hint with the VALUES clause, it is ignored and
conventional insert will be used. To use direct-path INSERT with the VALUES clause, refer
to "APPEND_VALUES Hint (page 2-95)".

2-94

Chapter 2
Comments

¢ See Also:

NOAPPEND Hint (page 2-110) for information on that hint and Oracle
Database Administrator’s Guide for information on direct-path inserts

2.6.4.3 APPEND_VALUES Hint

(P FPPe VALDES ()

The APPEND_VALUES hint instructs the optimizer to use direct-path INSERT with the VALUES
clause. If you do not specify this hint, then conventional INSERT is used.

In direct-path INSERT, data is appended to the end of the table, rather than using
existing space currently allocated to the table. As a result, direct-path INSERT can be
considerably faster than conventional INSERT.

The APPEND_VALUES hint can be used to greatly enhance performance. Some examples
of its uses are:

* In an Oracle Call Interface (OCI) program, when using large array binds or array
binds with row callbacks

* In PL/SQL, when loading a large number of rows with a FORALL loop that has an
INSERT statement with a VALUES clause

The APPEND_VALUES hint is only supported with the VALUES clause of the INSERT
statement. If you specify the APPEND_VALUES hint with the subquery syntax of the INSERT
statement, it is ignored and conventional insert will be used. To use direct-path INSERT
with a subquery, refer to "APPEND Hint (page 2-94)".

See Also:

Oracle Database Administrator’s Guide for information on direct-path inserts

2.6.4.4 CACHE Hint

queryblock
- R0 LT @ oo

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

The CACHE hint instructs the optimizer to place the blocks retrieved for the table at the
most recently used end of the LRU list in the buffer cache when a full table scan is
performed. This hint is useful for small lookup tables.

In the following example, the CACHE hint overrides the default caching specification of
the table:

ORACLE 2-95

Chapter 2
Comments

SELECT /*+ FULL (hr_emp) CACHE(hr_emp) */ last_name
FROM employees hr_emp;

The CACHE and NOCACHE hints affect system statistics table scans (long tables) and
table scans (short tables), as shown in the V$SYSSTAT data dictionary view.

2.6.4.5 CHANGE_DUPKEY_ERROR_INDEX Hint

—>@e| CHANGE_DUPKEY_ERROR_INDEX ()

Note:

The CHANGE_DUPKEY_ERROR_INDEX, IGNORE_ROW_ON_DUPKEY_INDEX, and
RETRY_ON_ROW_CHANGE hints are unlike other hints in that they have a semantic
effect. The general philosophy explained in Hints (page 2-87) does not apply
for these three hints.

The CHANGE_DUPKEY_ERROR_INDEX hint provides a mechanism to unambiguously identify a
unique key violation for a specified set of columns or for a specified index. When a
unique key violation occurs for the specified index, an ORA-38911 error is reported
instead of an ORA-001.

This hint applies to INSERT, UPDATE operations. If you specify an index, then the index
must exist and be unique. If you specify a column list instead of an index, then a
unigue index whose columns match the specified columns in number and order must
exist.

This use of this hint results in error messages if specific rules are violated. Refer to
IGNORE_ROW_ON_DUPKEY_INDEX Hint (page 2-103) for details.

Note:

This hint disables both APPEND mode and parallel DML.

2.6.4.6 CLUSTER Hint

queryblock
- EEEO-LY N 0.0

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

ORACLE 2-96

Chapter 2
Comments

The CLUSTER hint instructs the optimizer to use a cluster scan to access the specified
table. This hint applies only to tables in an indexed cluster.

2.6.4.7 CLUSTERING Hint

(Fo{asTERRE (D)

This hint is valid only for INSERT and MERGE operations on tables that are enabled for
attribute clustering. The CLUSTERING hint enables attribute clustering for direct-path
inserts (serial or parallel). This results in partially-clustered data, that is, data that is
clustered per each insert or merge operation. This hint overrides a NO ON LOAD setting in
the DDL that created or altered the table. This hint has no effect on tables that are not
enabled for attribute clustering.

See Also:

* clustering_when (page 15-113) clause of CREATE TABLE for more information
on the NO ON LOAD setting

- NO_CLUSTERING Hint (page 2-111)

2.6.4.8 CONTAINERS Hint

ORACLE

@ CONTAINERS F®->| DEFAULT_PDB_HINT 1=)5(" s(hint)s(" 5() (1)

The CONTAINERS hint is useful in a multitenant container database (CDB). You can
specify this hint in a SELECT statement that contains the CONTAINERS() clause. Such a
statement lets you query data in the specified table or view across all containers in a
CDB or application container.

e To query data in a CDB, you must be a common user connected to the CDB root,
and the table or view must exist in the root and all PDBs. The query returns all
rows from the table or view in the CDB root and in all open PDBs.

* To query data in an application container, you must be a common user connected
to the application root, and the table or view must exist in the application root and
all PDBs in the application container. The query returns all rows from the table or
view in the application root and in all open PDBs in the application container.

Statements that contain the CONTAINERS() clause generate and execute recursive SQL
statements in each queried PDB. You can use the CONTAINERS hint to pass a default
PDB hint to each recursive SQL statement. For hi nt, you can specify any SQL hint
that is appropriate for the SELECT statement.

In the following example, the NO_PARALLEL hint is passed to each recursive SQL
statement that is executed as part of the evaluation of the CONTAINERS() clause:

SELECT /*+ CONTAINERS(DEFAULT PDB_HINT="NO_PARALLEL") */
(CASE WHEN COUNT(*) < 10000

2-97

Chapter 2
Comments

THEN "Less than 10,000"
ELSE "10,000 or more" END) "Number of Tables"
FROM CONTAINERS(DBA_TABLES);

See Also:

containers_clause (page 19-67) for more information on the CONTAINERS()
clause

2.6.4.9 CURSOR_SHARING_EXACT Hint

—(7"+)| CURSOR_SHARING_EXACT |5(*/)>

Oracle can replace literals in SQL statements with bind variables, when it is safe to do
so. This replacement is controlled with the CURSOR_SHARING initialization parameter. The
CURSOR_SHARING_EXACT hint instructs the optimizer to switch this behavior off. When you
specify this hint, Oracle executes the SQL statement without any attempt to replace
literals with bind variables.

2.6.4.10 DISABLE_PARALLEL_DML Hint

—(7"+)| DISABLE_PARALLEL DML 5("/)>

The DISABLE_PARALLEL_DML hint disables parallel DML for DELETE, INSERT, MERGE, and
UPDATE statements. You can use this hint to disable parallel DML for an individual
statement when parallel DML is enabled for the session with the ALTER SESSION ENABLE
PARALLEL DML statement.

2.6.4.11 DRIVING_SITE Hint

ORACLE

@ queryblock
(7+){ DRIVING_SITE |x((tablespec)5() (1)

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

The DRIVING_SITE hint instructs the optimizer to execute the query at a different site
than that selected by the database. This hint is useful if you are using distributed query
optimization.

For example:

SELECT /*+ DRIVING_SITE(departments) */ *
FROM employees, departments@rsite
WHERE employees.department_id = departments.department_id;

2-98

Chapter 2
Comments

If this query is executed without the hint, then rows from departments are sent to the
local site, and the join is executed there. With the hint, the rows from employees are
sent to the remote site, and the query is executed there and the result set is returned
to the local site.

2.6.4.12 DYNAMIC_SAMPLING Hint

@ DYNAMIC_SAMPLING @ @@@

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

The DYNAMIC_SAMPLING hint instructs the optimizer how to control dynamic sampling to
improve server performance by determining more accurate predicate selectivity and
statistics for tables and indexes.

You can set the value of DYNAMIC_SAMPLING to a value from 0 to 10. The higher the level,
the more effort the compiler puts into dynamic sampling and the more broadly it is
applied. Sampling defaults to cursor level unless you specify t abl espec.

The i nteger value is 0 to 10, indicating the degree of sampling.

If a cardinality statistic already exists for the table, then the optimizer uses it.
Otherwise, the optimizer enables dynamic sampling to estimate the cardinality statistic.

If you specify t abl espec and the cardinality statistic already exists, then:

» If there is no single-table predicate (a WHERE clause that evaluates only one table),
then the optimizer trusts the existing statistics and ignores this hint. For example,
the following query will not result in any dynamic sampling if employees is analyzed:

SELECT /*+ DYNAMIC_SAMPLING(e 1) */ count(*)
FROM employees e;

« If there is a single-table predicate, then the optimizer uses the existing cardinality
statistic and estimates the selectivity of the predicate using the existing statistics.

To apply dynamic sampling to a specific table, use the following form of the hint:

SELECT /*+ DYNAMIC_SAMPLING(employees 1) */ *
FROM employees
WHERE ...

See Also:

Oracle Database SQL Tuning Guide for information about dynamic sampling
and the sampling levels that you can set

2.6.4.13 ENABLE_PARALLEL DML Hint

—(7"+){ ENABLE_PARALLEL DML |x(*/)»

ORACLE 2-99

Chapter 2
Comments

The ENABLE_PARALLEL_DML hint enables parallel DML for DELETE, INSERT, MERGE, and
UPDATE statements. You can use this hint to enable parallel DML for an individual
statement, rather than enabling parallel DML for the session with the ALTER SESSION
ENABLE PARALLEL DML statement.

See Also:

Oracle Database VLDB and Partitioning Guide for information about enabling
parallel DML

2.6.4.14 FACT Hint

queryblock
-0 T EEN G o0

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

The FACT hint is used in the context of the star transformation. It instructs the optimizer
that the table specified in t abl espec should be considered as a fact table.

2.6.4.15 FIRST_ROWS Hint

ORACLE

()| FIRST_RoWS (Op(Cinteger 5() (1)

The FIRST_ROWS hint instructs Oracle to optimize an individual SQL statement for fast
response, choosing the plan that returns the first n rows most efficiently. For i nt eger,
specify the number of rows to return.

For example, the optimizer uses the query optimization approach to optimize the
following statement for best response time:

SELECT /*+ FIRST_ROWS(10) */ employee_id, last_name, salary, job_id
FROM employees
WHERE department_id = 20;

In this example each department contains many employees. The user wants the first
10 employees of department 20 to be displayed as quickly as possible.

The optimizer ignores this hint in DELETE and UPDATE statement blocks and in SELECT
statement blocks that include any blocking operations, such as sorts or groupings.
Such statements cannot be optimized for best response time, because Oracle
Database must retrieve all rows accessed by the statement before returning the first
row. If you specify this hint in any such statement, then the database optimizes for
best throughput.

2-100

Chapter 2
Comments

See Also:

ALL_ROWS Hint (page 2-94) for additional information on the FIRST_ROWS hint
and statistics

2.6.4.16 FRESH_MV Hint

FO{FREsH (D)

The FRESH_MV hint applies when querying a real-time materialized view. This hint
instructs the optimizer to use on-query computation to fetch up-to-date data from the
materialized view, even if the materialized view is stale.

The optimizer ignores this hint in SELECT statement blocks that query an object that is
not a real-time materialized view, and in all UPDATE, INSERT, MERGE, and DELETE statement
blocks.

See Also:

The { ENABLE | DISABLE } ON QUERY COMPUTATION (page 14-30) clause
of CREATE MATERIALIZED VIEW for more information on real-time materialized
views

2.6.4.17 FULL Hint

ORACLE

queryblock
O N G 00

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

The FULL hint instructs the optimizer to perform a full table scan for the specified table.
For example:

SELECT /*+ FULL(e) */ employee_id, last_name
FROM hr.employees e
WHERE last_name LIKE :bl;

Oracle Database performs a full table scan on the employees table to execute this
statement, even if there is an index on the last_name column that is made available by
the condition in the WHERE clause.

The employees table has alias e in the FROM clause, so the hint must refer to the table by
its alias rather than by its name. Do not specify schema names in the hint even if they
are specified in the FROM clause.

2-101

Chapter 2
Comments

2.6.4.18 GATHER_OPTIMIZER_STATISTICS Hint

—(7"+)| GATHER_OPTIMIZER_STATISTICS |(*/)>

The GATHER_OPTIMIZER_STATISTICS hint instructs the optimizer to enable statistics
gathering during the following types of bulk loads:

* CREATE TABLE ... AS SELECT
e INSERT INTO ... SELECT into an empty table using a direct-path insert

See Also:

Oracle Database SQL Tuning Guide for more information on statistics
gathering for bulk loads

2.6.4.19 GROUPING Hint

(P {R0wme 1D

The GROUPING hint applies to data mining scoring functions when scoring partitioned
models. This hint results in partitioning the input data set into distinct data slices so
that each partition is scored in its entirety before advancing to the next partition;
however, parallelism by patrtition is still available. Data slices are determined by the
partitioning key columns that were used when the model was built. This method can
be used with any data mining function against a partitioned model. The hint may yield
a query performance gain when scoring large data that is associated with many
partitions, but may negatively impact performance when scoring large data with few

partitions on large systems. Typically, there is no performance gain if you use this hint
for single row queries.

In the following example, the GROUPING hint is used in the PREDICTION function.
SELECT PREDICTION(/*+ GROUPING */my_model USING *) pred FROM <input table>;

See Also:

Data Mining Functions (page 7-9)

2.6.4.20 HASH Hint

queryblock
oL G 00

ORACLE 2-102

Chapter 2
Comments

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

The HASH hint instructs the optimizer to use a hash scan to access the specified table.
This hint applies only to tables in a hash cluster.

2.6.4.21 IGNORE_ROW_ON_DUPKEY_INDEX Hint

—>@a| IGNORE_ROW_ON_DUPKEY_INDEX |5(()

Note:

The CHANGE_DUPKEY_ERROR_INDEX, IGNORE_ROW_ON_DUPKEY_INDEX, and
RETRY_ON_ROW_CHANGE hints are unlike other hints in that they have a semantic
effect. The general philosophy explained in Hints (page 2-87) does not apply
for these three hints.

The IGNORE_ROW_ON_DUPKEY_INDEX hint applies only to single-table INSERT operations. It is
not supported for UPDATE, DELETE, MERGE, or multitable insert operations.
IGNORE_ROW_ON_DUPKEY_INDEX causes the statement to ignore a unique key violation for a
specified set of columns or for a specified index. When a unique key violation is
encountered, a row-level rollback occurs and execution resumes with the next input
row. If you specify this hint when inserting data with DML error logging enabled, then
the unique key violation is not logged and does not cause statement termination.

The semantic effect of this hint results in error messages if specific rules are violated:

e If you specify i ndex, then the index must exist and be unique. Otherwise, the
statement causes ORA-38913.

* You must specify exactly one index. If you specify no index, then the statement
causes ORA-38912. If you specify more than one index, then the statement
causes ORA-38915.

* You can specify either a CHANGE_DUPKEY_ERROR_INDEX or IGNORE_ROW_ON_DUPKEY_INDEX
hint in an INSERT statement, but not both. If you specify both, then the statement
causes ORA-38915.

As with all hints, a syntax error in the hint causes it to be silently ignored. The result
will be that ORA-00001 will be caused, just as if no hint were used.

Note:

This hint disables both APPEND mode and parallel DML.

ORACLE 2-103

Chapter 2
Comments

¢ See Also:
CHANGE_DUPKEY_ERROR_INDEX Hint (page 2-96)

2.6.4.22 INDEX Hint

® e
teblespec) Oy

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89),
indexspec::= (page 2-89))

The INDEX hint instructs the optimizer to use an index scan for the specified table. You
can use the INDEX hint for function-based, domain, B-tree, bitmap, and bitmap join
indexes.

The behavior of the hint depends on the i ndexspec specification:

» If the INDEX hint specifies a single available index, then the database performs a
scan on this index. The optimizer does not consider a full table scan or a scan of
another index on the table.

* For a hint on a combination of multiple indexes, Oracle recommends using
INDEX_COMBINE rather than INDEX, because it is a more versatile hint. If the INDEX hint
specifies a list of available indexes, then the optimizer considers the cost of a scan
on each index in the list and then performs the index scan with the lowest cost.
The database can also choose to scan multiple indexes from this list and merge
the results, if such an access path has the lowest cost. The database does not
consider a full table scan or a scan on an index not listed in the hint.

» If the INDEX hint specifies no indexes, then the optimizer considers the cost of a
scan on each available index on the table and then performs the index scan with
the lowest cost. The database can also choose to scan multiple indexes and
merge the results, if such an access path has the lowest cost. The optimizer does
not consider a full table scan.

For example:
SELECT /*+ INDEX (employees emp_department_ix)*/ employee_id, department_id

FROM employees
WHERE department_id > 50;

2.6.4.23 INDEX_ASC Hint

queryblock /M\
N, oL 5,0,

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89),
indexspec::= (page 2-89))

ORACLE 2-104

Chapter 2
Comments

The INDEX_ASC hint instructs the optimizer to use an index scan for the specified table.
If the statement uses an index range scan, then Oracle Database scans the index
entries in ascending order of their indexed values. Each parameter serves the same
purpose as in INDEX Hint (page 2-104).

The default behavior for a range scan is to scan index entries in ascending order of
their indexed values, or in descending order for a descending index. This hint does not
change the default order of the index, and therefore does not specify anything more
than the INDEX hint. However, you can use the INDEX_ASC hint to specify ascending
range scans explicitly should the default behavior change.

2.6.4.24 INDEX_COMBINE Hint

® o)

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89),
indexspec::= (page 2-89))

The INDEX_COMBINE hint instructs the optimizer to use a bitmap access path for the
table. If i ndexspec is omitted from the INDEX_COMBINE hint, then the optimizer uses
whatever Boolean combination of indexes has the best cost estimate for the table. If
you specify indexspec, then the optimizer tries to use some Boolean combination of the
specified indexes. Each parameter serves the same purpose as in INDEX Hint

(page 2-104). For example:

SELECT /*+ INDEX_COMBINE(e emp_manager_ix emp_department_ix) */ *
FROM employees e
WHERE manager_id = 108
OR department_id = 110;

2.6.4.25 INDEX_DESC Hint

ORACLE

® GV

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89),
indexspec::= (page 2-89))

The INDEX_DESC hint instructs the optimizer to use a descending index scan for the
specified table. If the statement uses an index range scan and the index is ascending,
then Oracle scans the index entries in descending order of their indexed values. In a
partitioned index, the results are in descending order within each partition. For a
descending index, this hint effectively cancels out the descending order, resulting in a
scan of the index entries in ascending order. Each parameter serves the same
purpose as in INDEX Hint (page 2-104). For example:

SELECT /*+ INDEX_DESC(e emp_name_ix) */ *
FROM employees e;

2-105

Chapter 2
Comments

See Also:

Oracle Database SQL Tuning Guide for information on full scans

2.6.4.26 INDEX_FFS Hint

queryblock I—)—W—\
AN @ L v

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89),
indexspec::= (page 2-89))

The INDEX_FFS hint instructs the optimizer to perform a fast full index scan rather than a
full table scan.

Each parameter serves the same purpose as in INDEX Hint (page 2-104). For
example:

SELECT /*+ INDEX_FFS(e emp_name_ix) */ first_name
FROM employees e;

2.6.4.27 INDEX_JOIN Hint

-queryblock f—)_-_\ .W.
= () 0703

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89),
indexspec::= (page 2-89))

The INDEX_JOIN hint instructs the optimizer to use an index join as an access path. For
the hint to have a positive effect, a sufficiently small number of indexes must exist that
contain all the columns required to resolve the query.

Each parameter serves the same purpose as in INDEX Hint (page 2-104). For
example, the following query uses an index join to access the manager_id and
department_id columns, both of which are indexed in the employees table.

SELECT /*+ INDEX_JOIN(e emp_manager_ix emp_department_ix) */ department_id
FROM employees e
WHERE manager_id < 110
AND department_id < 50;

2.6.4.28 INDEX_SS Hint

queryblock I—)—W—\
N G- L 5,0

ORACLE 2-106

Chapter 2
Comments

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89),
indexspec::= (page 2-89))

The INDEX_SS hint instructs the optimizer to perform an index skip scan for the specified
table. If the statement uses an index range scan, then Oracle scans the index entries
in ascending order of their indexed values. In a partitioned index, the results are in
ascending order within each partition.

Each parameter serves the same purpose as in INDEX Hint (page 2-104). For
example:

SELECT /*+ INDEX_SS(e emp_name_ix) */ last_name
FROM employees e
WHERE first _name = "Steven®;

See Also:

Oracle Database SQL Tuning Guide for information on index skip scans

2.6.4.29 INDEX_SS_ASC Hint

® G

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89),
indexspec::= (page 2-89))

The INDEX_SS_ASC hint instructs the optimizer to perform an index skip scan for the
specified table. If the statement uses an index range scan, then Oracle Database
scans the index entries in ascending order of their indexed values. In a partitioned
index, the results are in ascending order within each partition. Each parameter serves
the same purpose as in INDEX Hint (page 2-104).

The default behavior for a range scan is to scan index entries in ascending order of
their indexed values, or in descending order for a descending index. This hint does not
change the default order of the index, and therefore does not specify anything more
than the INDEX_SS hint. However, you can use the INDEX_SS_ASC hint to specify
ascending range scans explicitly should the default behavior change.

¢ See Also:

Oracle Database SQL Tuning Guide for information on index skip scans

2.6.4.30 INDEX_SS_DESC Hint

® GO

ORACLE 2-107

Chapter 2
Comments

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89),
indexspec::= (page 2-89))

The INDEX_SS_DESC hint instructs the optimizer to perform an index skip scan for the
specified table. If the statement uses an index range scan and the index is ascending,
then Oracle scans the index entries in descending order of their indexed values. In a
partitioned index, the results are in descending order within each partition. For a
descending index, this hint effectively cancels out the descending order, resulting in a
scan of the index entries in ascending order.

Each parameter serves the same purpose as in the INDEX Hint (page 2-104). For
example:

SELECT /*+ INDEX_SS_DESC(e emp_name_ix) */ last_name
FROM employees e
WHERE first _name = "Steven®;

See Also:

Oracle Database SQL Tuning Guide for information on index skip scans

2.6.4.31 INMEMORY Hint

-queryblock
LOEEN GO

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))
The INMEMORY hint enables In-Memory queries.

This hint does not instruct the optimizer to perform a full table scan. If a full table scan
is desired, then also specify the FULL Hint (page 2-101).

2.6.4.32 INMEMORY_PRUNING Hint

@ INVEMORY_PRUNING @ @@@

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

The INMEMORY_PRUNING hint enables pruning of In-Memory queries.

2.6.4.33 LEADING Hint

queryblock
eEE oL PN (G 00

ORACLE 2-108

Chapter 2
Comments

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

The LEADING hint instructs the optimizer to use the specified set of tables as the prefix
in the execution plan. This hint is more versatile than the ORDERED hint. For example:

SELECT /*+ LEADING(e j) */ *
FROM employees e, departments d, job_history j
WHERE e._department_id = d.department_id
AND e.hire_date = j.start_date;

The LEADING hint is ignored if the tables specified cannot be joined first in the order
specified because of dependencies in the join graph. If you specify two or more
conflicting LEADING hints, then all of them are ignored. If you specify the ORDERED hint, it
overrides all LEADING hints.

2.6.4.34 MERGE Hint

queryblock

ol

tablespec

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))
The MERGE hint lets you merge views in a query.

If a view's query block contains a GROUP BY clause or DISTINCT operator in the SELECT list,
then the optimizer can merge the view into the accessing statement only if complex
view merging is enabled. Complex merging can also be used to merge an IN subquery
into the accessing statement if the subquery is uncorrelated.

For example:

SELECT /*+ MERGE(v) */ el.last name, el.salary, v.avg_salary
FROM employees el,
(SELECT department_id, avg(salary) avg_salary
FROM employees e2
GROUP BY department_id) v
WHERE el.department_id = v.department_id
AND el.salary > v.avg_salary
ORDER BY el.last_name;

When the MERGE hint is used without an argument, it should be placed in the view query
block. When MERGE is used with the view name as an argument, it should be placed in
the surrounding query.

2.6.4.35 MODEL_MIN_ANALYSIS Hint

—(7"+)| MODEL_MIN_ANALYSIS (/)

The MODEL_MIN_ANALYSIS hint instructs the optimizer to omit some compile-time
optimizations of spreadsheet rules—primarily detailed dependency graph analysis.

ORACLE 2-109

Chapter 2
Comments

Other spreadsheet optimizations, such as creating filters to selectively populate
spreadsheet access structures and limited rule pruning, are still used by the optimizer.

This hint reduces compilation time because spreadsheet analysis can be lengthy if the
number of spreadsheet rules is more than several hundreds.

2.6.4.36 MONITOR Hint

(P oNToR (D

The MONITOR hint forces real-time SQL monitoring for the query, even if the statement is
not long running. This hint is valid only when the parameter
CONTROL_MANAGEMENT _PACK_ACCESS is set to DIAGNOST IC+TUNING.

See Also:

Oracle Database SQL Tuning Guide for more information about real-time SQL
monitoring

2.6.4.37 NATIVE_FULL_OUTER_JOIN Hint

—(7+)3{ NATIVE_FULL_OUTER_JOIN |(*/)>

The NATIVE_FULL_OUTER_JOIN hint instructs the optimizer to use native full outer join,
which is a native execution method based on a hash join.

See Also:

- NO_NATIVE_FULL_OUTER_JOIN Hint (page 2-115)

e Oracle Database SQL Tuning Guide for more information about native full
outer joins

2.6.4.38 NOAPPEND Hint

(F{oRPPERG J:(7)

The NOAPPEND hint instructs the optimizer to use conventional INSERT by disabling
parallel mode for the duration of the INSERT statement. Conventional INSERT is the
default in serial mode, and direct-path INSERT is the default in parallel mode.

ORACLE 2-110

Chapter 2
Comments

2.6.4.39 NOCACHE Hint

queryblock
D =z O SACAC R Vo 1)

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

The NOCACHE hint instructs the optimizer to place the blocks retrieved for the table at the
least recently used end of the LRU list in the buffer cache when a full table scan is
performed. This is the normal behavior of blocks in the buffer cache. For example:

SELECT /*+ FULL(hr_emp) NOCACHE(hr_emp) */ last_name
FROM employees hr_emp;

The CACHE and NOCACHE hints affect system statistics table scans(long tables) and table
scans(short tables), as shown in the V$SYSSTAT view.

2.6.4.40 NO_CLUSTERING Hint

(P MOLBLTSTERRG (7

This hint is valid only for INSERT and MERGE operations on tables that are enabled for
attribute clustering. The NO_CLUSTERING hint disables attribute clustering for direct-path
inserts (serial or parallel). This hint overrides a YES ON LOAD setting in the DDL that
created or altered the table. This hint has no effect on tables that are not enabled for
attribute clustering.

¢ See Also:

e clustering_when (page 15-113) clause of CREATE TABLE for more information
on the YES ON LOAD setting

« CLUSTERING Hint (page 2-97)

2.6.4.41 NO_EXPAND Hint

ORACLE

ololcio

(See Specifying a Query Block in a Hint (page 2-88))

The NO_EXPAND hint instructs the optimizer not to consider OrR-expansion for queries
having OR conditions or IN-lists in the WHERE clause. Usually, the optimizer considers

2-111

Chapter 2
Comments

using OR expansion and uses this method if it decides that the cost is lower than not
using it. For example:

SELECT /*+ NO_EXPAND */ *
FROM employees e, departments d
WHERE e.manager_id = 108
OR d.department_id = 110;

See Also:
The USE_CONCAT Hint (page 2-135), which is the opposite of this hint

2.6.4.42 NO_FACT Hint

-queryblock
O V51010

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

The NO_FACT hint is used in the context of the star transformation. It instruct the
optimizer that the queried table should not be considered as a fact table.

2.6.4.43 NO_GATHER_OPTIMIZER_STATISTICS Hint

— (7")| NO_GATHER_OPTIMIZER_STATISTICS |(*/)>

The NO_GATHER_OPTIMIZER_STATISTICS hint instructs the optimizer to disable statistics
gathering during the following types of bulk loads:

e CREATE TABLE AS SELECT
e INSERT INTO ... SELECT into an empty table using a direct path insert

See Also:

Oracle Database SQL Tuning Guide for more information on statistics
gathering for bulk loads

2.6.4.44 NO_INDEX Hint

queryblock ﬁ_W_\
DN o L

ORACLE 2-112

Chapter 2
Comments

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89),
indexspec::= (page 2-89))

The NO_INDEX hint instructs the optimizer not to use one or more indexes for the
specified table. For example:

SELECT /*+ NO_INDEX(employees emp_empid) */ employee_id
FROM employees
WHERE employee_id > 200;

Each parameter serves the same purpose as in INDEX Hint (page 2-104) with the
following modifications:

« If this hint specifies a single available index, then the optimizer does not consider a
scan on this index. Other indexes not specified are still considered.

e If this hint specifies a list of available indexes, then the optimizer does not consider
a scan on any of the specified indexes. Other indexes not specified in the list are
still considered.

e If this hint specifies no indexes, then the optimizer does not consider a scan on
any index on the table. This behavior is the same as a NO_INDEX hint that specifies
a list of all available indexes for the table.

The NO_INDEX hint applies to function-based, B-tree, bitmap, cluster, or domain indexes.
If a NO_INDEX hint and an index hint (INDEX, INDEX_ASC, INDEX_DESC, INDEX_COMBINE, or
INDEX_FFS) both specify the same indexes, then the database ignores both the NO_INDEX
hint and the index hint for the specified indexes and considers those indexes for use
during execution of the statement.

2.6.4.45 NO_INDEX_FFS Hint

® @)

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89),
indexspec::= (page 2-89))

The NO_INDEX_FFS hint instructs the optimizer to exclude a fast full index scan of the
specified indexes on the specified table. Each parameter serves the same purpose as
in the NO_INDEX Hint (page 2-112). For example:

SELECT /*+ NO_INDEX_FFS(items item order_ix) */ order_id
FROM order_items items;

2.6.4.46 NO_INDEX_SS Hint

ORACLE

® @)

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89),
indexspec::= (page 2-89))

2-113

Chapter 2
Comments

The NO_INDEX_SS hint instructs the optimizer to exclude a skip scan of the specified
indexes on the specified table. Each parameter serves the same purpose as in the
NO_INDEX Hint (page 2-112).

¢ See Also:

Oracle Database SQL Tuning Guide for information on index skip scans

2.6.4.47 NO_INMEMORY Hint

@ queryblock
@S LI C (@) DD

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

The NO_INMEMORY hint disables In-Memory queries.

2.6.4.48 NO_INMEMORY_PRUNING Hint

@ queryblock

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

The NO_INMEMORY_PRUNING hint disables pruning of In-Memory queries.

2.6.4.49 NO_MERGE Hint

ORACLE

@ queryblock
tablespec

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

The NO_MERGE hint instructs the optimizer not to combine the outer query and any inline
view queries into a single query.

This hint lets you have more influence over the way in which the view is accessed. For
example, the following statement causes view seattle_dept not to be merged:

SELECT /*+ NO_MERGE(seattle_dept) */ el.last_name, seattle_dept.department_name
FROM employees el,
(SELECT location_id, department_id, department_name
FROM departments

2-114

Chapter 2
Comments

WHERE location_id = 1700) seattle_dept
WHERE el.department_id = seattle_dept.department_id;

When you use the NO_MERGE hint in the view query block, specify it without an argument.
When you specify NO_MERGE in the surrounding query, specify it with the view name as
an argument.

2.6.4.50 NO_MONITOR Hint

(F{omoRToR {7

The NO_MONITOR hint disables real-time SQL monitoring for the query, even if the query
is long running.

2.6.451 NO_NATIVE_FULL_OUTER_JOIN Hint

—(7+)3{ NO_NATIVE_FULL_OUTER_JON |(*/)>

The NO_NATIVE_FULL_OUTER_JOIN hint instructs the optimizer to exclude the native
execution method when joining each specified table. Instead, the full outer join is
executed as a union of left outer join and anti-join.

See Also:
NATIVE_FULL_OUTER_JOIN Hint (page 2-110)

2.6.4.52 NO_PARALLEL Hint

ORACLE

@ queryblock
{0 PR (] (@) (DD

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

The NO_PARALLEL hint instructs the optimizer to run the statement serially. This hint
overrides the value of the PARALLEL_DEGREE_POLICY initialization parameter. It also
overrides a PARALLEL parameter in the DDL that created or altered the table. For
example, the following SELECT statement will run serially:

ALTER TABLE employees PARALLEL 8;
SELECT /*+ NO_PARALLEL(hr_emp) */ last_name
FROM employees hr_emp;

2-115

Chapter 2
Comments

See Also:

* Note on Parallel Hints (page 2-124) for more information on the parallel
hints

* QOracle Database Reference for more information on the
PARALLEL_DEGREE_POLICY initialization parameter

2.6.4.53 NOPARALLEL Hint

The NOPARALLEL hint has been deprecated. Use the NO_PARALLEL hint instead.

2.6.4.54 NO_PARALLEL_INDEX Hint

® G
—>@a| NO_PARALLEL_INDEX |->@ (tablespec) @@

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89),
indexspec::= (page 2-89))

The NO_PARALLEL_INDEX hint overrides a PARALLEL parameter in the DDL that created or
altered the index, thus avoiding a parallel index scan operation.

See Also:

Note on Parallel Hints (page 2-124) for more information on the parallel hints

2.6.4.55 NOPARALLEL_INDEX Hint

The NOPARALLEL_INDEX hint has been deprecated. Use the NO_PARALLEL_INDEX hint
instead.

2.6.4.56 NO_PQ_CONCURRENT _UNION Hint

O® 0
@ NO_PQ_CONCURRENT_UNION | @

(See Specifying a Query Block in a Hint (page 2-88))

The NO_PQ_CONCURRENT_UNION hint instructs the optimizer to disable concurrent
processing of UNION and UNION ALL operations.

ORACLE 2-116

Chapter 2
Comments

See Also:

- PQ_CONCURRENT_UNION Hint (page 2-127)

* Oracle Database VLDB and Partitioning Guide for information about using
this hint

2.6.457 NO_PQ_SKEW Hint

@ queryblock
@S IITEC @ DA

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

The NO_PQ_SKEW hint advises the optimizer that the distribution of the values of the join
keys for a parallel join is not skewed—that is, a high percentage of rows do not have
the same join key values. The table specified in t abl espec is the probe table of the
hash join.

2.6.4.58 NO_PUSH_PRED Hint

queryblock

@ queryblock
tablespec

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

—(7"+)3{ No_PUSH_PRED (T

The NO_PUSH_PRED hint instructs the optimizer not to push a join predicate into the view.
For example:

SELECT /*+ NO_MERGE(v) NO_PUSH_PRED(v) */ *
FROM employees e,
(SELECT manager_id
FROM employees) v
WHERE e.manager_id = v.manager_id(+)
AND e.employee_id = 100;

2.6.4.59 NO_PUSH_SUBQ Hint

ORACLE

0lC 0
—>(:)»| NO_PUSH_SUBQ @

(See Specifying a Query Block in a Hint (page 2-88))

2-117

Chapter 2
Comments

The NO_PUSH_SUBQ hint instructs the optimizer to evaluate nonmerged subqueries as the
last step in the execution plan. Doing so can improve performance if the subquery is
relatively expensive or does not reduce the number of rows significantly.

2.6.4.60 NO_PX_JOIN_FILTER Hint

_>@»| NO_PX_JOIN_FILTER tablespec}s@-)@-)

This hint prevents the optimizer from using parallel join bitmap filtering.

2.6.4.61 NO_QUERY_TRANSFORMATION Hint

—(7'+) NO_QUERY_TRANSFORMATION |5(*/)>

The NO_QUERY_TRANSFORMATION hint instructs the optimizer to skip all query
transformations, including but not limited to OrR-expansion, view merging, subquery
unnesting, star transformation, and materialized view rewrite. For example:

SELECT /*+ NO_QUERY_TRANSFORMATION */ employee_id, last_name
FROM (SELECT * FROM employees €) v
WHERE v.last_name = "Smith";

2.6.4.62 NO_RESULT_CACHE Hint

—(7"+)3{ NO_RESULT_CACHE (*/)»

The optimizer caches query results in the result cache if the RESULT _CACHE_MODE
initialization parameter is set to FORCE. In this case, the NO_RESULT_CACHE hint disables
such caching for the current query.

If the query is executed from OCI client and OCI client result cache is enabled, then
the NO_RESULT_CACHE hint disables caching for the current query.

2.6.4.63 NO_REWRITE Hint

ORACLE

ololczDT0

(See Specifying a Query Block in a Hint (page 2-88))

The NO_REWRITE hint instructs the optimizer to disable query rewrite for the query block,
overriding the setting of the parameter QUERY_REWRITE_ENABLED. For example:

SELECT /*+ NO_REWRITE */ sum(s.amount_sold) AS dollars
FROM sales s, times t

2-118

Chapter 2
Comments

WHERE s.time_id = t.time_id
GROUP BY t.calendar_month_desc;

2.6.4.64 NOREWRITE Hint

The NOREWRITE hint has been deprecated. Use the NO_REWRITE hint instead.

2.6.4.65 NO_STAR_TRANSFORMATION Hint

D@ ®
@ NO_STAR_TRANSFORMATION | @

(See Specifying a Query Block in a Hint (page 2-88))

The NO_STAR_TRANSFORMATION hint instructs the optimizer not to perform star query
transformation.

2.6.4.66 NO_STATEMENT_QUEUING Hint

—(+) NO_STATEMENT_QUEUING ("7}

The NO_STATEMENT_QUEUING hint influences whether or not a statement is queued with
parallel statement queuing.

When PARALLEL_DEGREE_POLICY is set to AUTO, this hint enables a statement to bypass
the parallel statement queue. However, a statement that bypasses the statement
gueue can potentially cause the system to exceed the maximum number of parallel
execution servers defined by the value of the PARALLEL_SERVERS_TARGET initialization
parameter, which determines the limit at which parallel statement queuing is initiated.

There is no guarantee that the statement that bypasses the parallel statement queue
receives the number of parallel execution servers requested because only the number
of parallel execution servers available on the system, up to the value of the
PARALLEL_MAX_SERVERS initialization parameter, can be allocated.

For example:
SELECT /*+ NO_STATEMENT_QUEUING */ emp.last_name, dpt.department_name

FROM employees emp, departments dpt
WHERE emp.department_id = dpt.department_id;

See Also:
STATEMENT_QUEUING Hint (page 2-134)

ORACLE 2-119

Chapter 2
Comments

2.6.4.67 NO_UNNEST Hint

O@-@AD

(See Specifying a Query Block in a Hint (page 2-88))

Use of the NO_UNNEST hint turns off unnesting .

2.6.4.68 NO_USE_BAND Hint

@ queryblock
@ ¢ (@) DD

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

The NO_USE_BAND hint instructs the optimizer to exclude band joins when joining each
specified table to another row source. For example:

SELECT /*+ NO_USE_BAND(el e2) */
el.last_name
|l * has salary between 100 less and 100 more than
|| e2.last_name AS "SALARY COMPARISON"

FROM employees el, employees e2

WHERE el.salary BETWEEN e2.salary - 100 AND e2.salary + 100;

2.6.4.69 NO_USE_CUBE Hint

@ queryblock
O (@ -

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

The NO_USE_CUBE hint instructs the optimizer to exclude cube joins when joining each
specified table to another row source using the specified table as the inner table.

2.6.4.70 NO_USE_HASH Hint

ORACLE

@ queryblock
O (@ -

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

2-120

Chapter 2
Comments

The NO_USE_HASH hint instructs the optimizer to exclude hash joins when joining each
specified table to another row source using the specified table as the inner table. For
example:

SELECT /*+ NO_USE_HASH(e d) */ *
FROM employees e, departments d
WHERE e.department_id = d.department_id;

2.6.4.71 NO_USE_MERGE Hint

@ queryblock
O B} (@ -

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

The NO_USE_MERGE hint instructs the optimizer to exclude sort-merge joins when joining
each specified table to another row source using the specified table as the inner table.
For example:

SELECT /*+ NO_USE_MERGE(e d) */ *
FROM employees e, departments d
WHERE e.department_id = d.department_id
ORDER BY d.department_id;

2.6.4.72 NO_USE_NL Hint

queryblock
O (G O

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

The NO_USE_NL hint instructs the optimizer to exclude nested loops joins when joining
each specified table to another row source using the specified table as the inner table.
For example:

SELECT /*+ NO_USE_NL(I h) */ *
FROM orders h, order_items |
WHERE I.order_id = h.order_id

AND I.order_id > 2400;

When this hint is specified, only hash join and sort-merge joins are considered for the
specified tables. However, in some cases tables can be joined only by using nested
loops. In such cases, the optimizer ignores the hint for those tables.

2.6.4.73 NO_XML_QUERY_REWRITE Hint

ORACLE

—(7"+)-{ NO_XML_QUERY_REWRITE |(*/)>

2-121

Chapter 2
Comments

The NO_XML_QUERY_REWRITE hint instructs the optimizer to prohibit the rewriting of XPath
expressions in SQL statements. By prohibiting the rewriting of XPath expressions, this
hint also prohibits the use of any XMLIndexes for the current query. For example:

SELECT /*+NO_XML_QUERY_REWRITE*/ XMLQUERY("<A/>" RETURNING CONTENT)
FROM DUAL;

See Also:
NO_XMLINDEX_REWRITE Hint (page 2-122)

2.6.4.74 NO_XMLINDEX_REWRITE Hint

—(7+)H{ NO_XMLINDEX_REWRITE |(*/)>

The NO_XMLINDEX_REWRITE hint instructs the optimizer not to use any XMLIndex indexes
for the current query. For example:

SELECT /*+NO_XMLINDEX_REWRITE*/ count(*)
FROM warehouses
WHERE existsNode(warehouse_spec, "/Warehouse/Building®) = 1;

See Also:

NO_XML_QUERY_REWRITE Hint (page 2-121) for another way to disable
the use of XMLIndexes

2.6.4.75 NO_ZONEMAP Hint

ORACLE

@ queryblock
@ NO_ZONEMAP |5((tablespec

PARTITION

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

The NO_ZONEMAP hint disables the use of a zone map for different types of pruning. This
hint overrides an ENABLE PRUNING setting in the DDL that created or altered the zone
map.

Specify one of the following options:

* SCAN - Disables the use of a zone map for scan pruning.

e JOIN - Disables the use of a zone map for join pruning.

2-122

Chapter 2
Comments

* PARTITION - Disables the use of a zone map for partition pruning.

See Also:
- ENABLE | DISABLE PRUNING (page 14-55) clause of CREATE
MATERIALIZED ZONEMAP

* Oracle Database Data Warehousing Guide for more information on
pruning with zone maps

2.6.4.76 OPT_PARAM Hint

—>@—>| OPT_PARAM |—>®{parameter_name & a a

The OPT_PARAM hint lets you set an initialization parameter for the duration of the current
query only. This hint is valid only for the following parameters: APPROX_FOR_AGGREGATION,
APPROX_FOR_COUNT_DISTINCT, APPROX_FOR_PERCENTILE, OPTIMIZER_DYNAMIC_SAMPLING,
OPTIMIZER_INDEX_CACHING, OPTIMIZER_INDEX_COST_ADJ, OPTIMIZER_SECURE_VIEW_MERGING,
and STAR_TRANSFORMATION_ENABLED.

For example, the following hint sets the parameter STAR_TRANSFORMAT ION_ENABLED to TRUE
for the statement to which it is added:

SELECT /*+ OPT_PARAM("star_transformation_enabled® "true®) */ *
FROM ... ;

Parameter values that are strings are enclosed in single quotation marks. Numeric
parameter values are specified without quotation marks.

2.6.4.77 ORDERED Hint

ORACLE

(F{oRERES J:(7)

The ORDERED hint instructs Oracle to join tables in the order in which they appear in the
FROM clause. Oracle recommends that you use the LEADING hint, which is more versatile
than the ORDERED hint.

When you omit the ORDERED hint from a SQL statement requiring a join, the optimizer
chooses the order in which to join the tables. You might want to use the ORDERED hint to
specify a join order if you know something that the optimizer does not know about the
number of rows selected from each table. Such information lets you choose an inner
and outer table better than the optimizer could.

The following query is an example of the use of the ORDERED hint:

SELECT /*+ ORDERED */ o.order_id, c.customer_id, l.unit_price * l.quantity
FROM customers c, order_items I, orders o
WHERE c.cust_last_name = "Taylor"®

2-123

Chapter 2
Comments

AND o.customer_id = c.customer_id
AND o.order_id = l.order_id;

2.6.4.78 PARALLEL Hint

Note on Parallel Hints

Beginning with Oracle Database 11g Release 2, the PARALLEL and NO_PARALLEL hints are
statement-level hints and supersede the earlier object-level hints: PARALLEL_INDEX,
NO_PARALLEL_INDEX, and previously specified PARALLEL and NO_PARALLEL hints. For
PARALLEL, if you specify i nt eger, then that degree of parallelism will be used for the
statement. If you omit i nt eger, then the database computes the degree of parallelism.
All the access paths that can use parallelism will use the specified or computed degree
of parallelism.

In the syntax diagrams below, paral | el _hi nt _st at ement shows the syntax for
statement-level hints, and paral | el _hi nt _obj ect shows the syntax for object-level hints.
Object-level hints are supported for backward compatibility, and are superseded by
statement-level hints.

parallel_hint_statement::=

DEFAULT

o
T
o

PARALLEL

parallel_hint_object::=

integer

DEFAULT

-queryblock
@ (@ (tablespec }

O

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

The PARALLEL hint instructs the optimizer to use the specified number of concurrent
servers for a parallel operation. This hint overrides the value of the
PARALLEL_DEGREE_POLICY initialization parameter. It applies to the SELECT, INSERT, MERGE,
UPDATE, and DELETE portions of a statement, as well as to the table scan portion. If any
parallel restrictions are violated, then the hint is ignored.

Note:

The number of servers that can be used is twice the value in the PARALLEL hint,
if sorting or grouping operations also take place.

ORACLE 2-124

ORACLE

Chapter 2
Comments

For a statement-level PARALLEL hint:

* PARALLEL: The statement always is run parallel, and the database computes the
degree of parallelism, which can be 2 or greater.

* PARALLEL (DEFAULT): The optimizer calculates a degree of parallelism equal to the
number of CPUs available on all participating instances times the value of the
PARALLEL_THREADS_PER_CPU initialization parameter.

* PARALLEL (AUTO): The database computes the degree of parallelism, which can be 1
or greater. If the computed degree of parallelism is 1, then the statement runs
serially.

e PARALLEL (MANUAL): The optimizer is forced to use the parallel settings of the objects
in the statement.

* PARALLEL (i nt eger): The optimizer uses the degree of parallelism specified by
i nteger.

In the following example, the optimizer calculates the degree of parallelism. The
statement always runs in parallel.

SELECT /*+ PARALLEL */ last_name
FROM employees;

In the following example, the optimizer calculates the degree of parallelism, but that

degree may be 1, in which case the statement will run serially.

SELECT /*+ PARALLEL (AUTO) */ last_name
FROM employees;

In the following example, the PARALLEL hint advises the optimizer to use the degree of
parallelism currently in effect for the table itself, which is 5:

CREATE TABLE parallel_table (coll number, col2 VARCHAR2(10)) PARALLEL 5;

SELECT /*+ PARALLEL (MANUAL) */ col2
FROM parallel_table;

For an object-level PARALLEL hint:

* PARALLEL: The query coordinator should examine the settings of the initialization
parameters to determine the default degree of parallelism.

° PARALLEL (i nt eger): The optimizer uses the degree of parallelism specified by
i nt eger.

° PARALLEL (DEFAULT): The optimizer calculates a degree of parallelism equal to the
number of CPUs available on all participating instances times the value of the
PARALLEL_THREADS_PER_CPU initialization parameter.

In the following example, the PARALLEL hint overrides the degree of parallelism
specified in the employees table definition:

SELECT /*+ FULL(hr_emp) PARALLEL(hr_emp, 5) */ last_name
FROM employees hr_emp;

In the next example, the PARALLEL hint overrides the degree of parallelism specified in
the employees table definition and instructs the optimizer to calculate a degree of
parallelism equal to the number of CPUs available on all participating instances times
the value of the PARALLEL_THREADS_PER_CPU initialization parameter.

2-125

Chapter 2
Comments

SELECT /*+ FULL(hr_emp) PARALLEL(hr_emp, DEFAULT) */ last_name
FROM employees hr_emp;

Refer to CREATE TABLE (page 15-16) and Oracle Database Concepts for more
information on parallel execution.

See Also:

° CREATE TABLE (page 15-16) and Oracle Database Concepts for more
information on parallel execution.

e Oracle Database PL/SQL Packages and Types Reference for information
on the DBMS_PARALLEL_EXECUTE package, which provides methods to apply
table changes in chunks of rows. Changes to each chunk are
independently committed when there are no errors.

e Oracle Database Reference for more information on the
PARALLEL_DEGREE_POLICY initialization parameter

- NO_PARALLEL Hint (page 2-115)

2.6.4.79 PARALLEL_INDEX Hint

® o)

)

O

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89),
indexspec::= (page 2-89))

The PARALLEL_INDEX hint instructs the optimizer to use the specified number of
concurrent servers to parallelize index range scans, full scans, and fast full scans for
partitioned indexes.

The i nt eger value indicates the degree of parallelism for the specified index.
Specifying DEFAULT or no value signifies that the query coordinator should examine the
settings of the initialization parameters to determine the default degree of parallelism.
For example, the following hint indicates three parallel execution processes are to be
used:

SELECT /*+ PARALLEL_INDEX(tablel, indexl, 3) */

See Also:

Note on Parallel Hints (page 2-124) for more information on the parallel hints

ORACLE 2-126

Chapter 2
Comments

2.6.4.80 PQ_CONCURRENT_UNION Hint

O® ®
—>®e| PQ_CONCURRENT_UNION | @

(See Specifying a Query Block in a Hint (page 2-88))

The PQ_CONCURRENT_UNION hint instructs the optimizer to enable concurrent processing of
UNION and UNION ALL operations.

¢ See Also:

- NO_PQ_CONCURRENT_UNION Hint (page 2-116)

* Oracle Database VLDB and Partitioning Guide for information about using
this hint

2.6.4.81 PQ_DISTRIBUTE Hint

@ queryblock distribution
@ PQ_DISTRIBUTE |{ (tablespec
outerﬁdistribution)s(innerfdistribution

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

The PQ_DISTRIBUTE hint instructs the optimizer how to distribute rows among producer
and consumer query servers. You can control the distribution of rows for either joins or
for load.

Control of Distribution for Load

You can control the distribution of rows for parallel INSERT ... SELECT and parallel CREATE
TABLE ... AS SELECT statements to direct how rows should be distributed between the
producer (query) and the consumer (load) servers. Use the upper branch of the syntax
by specifying a single distribution method. The values of the distribution methods and
their semantics are described in Table 2-24 (page 2-128).

ORACLE 2-127

ORACLE

Chapter 2
Comments

Table 2-24 Distribution Values for Load

__|
Distribution Description

NONE No distribution. That is the query and load operation are
combined into each query server. All servers will load all
partitions. This lack of distribution is useful to avoid the overhead
of distributing rows where there is no skew. Skew can occur due
to empty segments or to a predicate in the statement that filters
out all rows evaluated by the query. If skew occurs due to using
this method, then use either RANDOM or RANDOM_LOCAL distribution
instead.

Note: Use this distribution with care. Each partition loaded
requires a minimum of 512 KB per process of PGA memory. If
you also use compression, then approximately 1.5 MB of PGA
memory is consumer per server.

PARTITION This method uses the partitioning information of t abl espec to
distribute the rows from the query servers to the load servers.
Use this distribution method when it is not possible or desirable
to combine the query and load operations, when the number of
partitions being loaded is greater than or equal to the number of
load servers, and the input data will be evenly distributed across
the partitions being loaded—that is, there is no skew.

RANDOM This method distributes the rows from the producers in a round-
robin fashion to the consumers. Use this distribution method
when the input data is highly skewed.

RANDOM_LOCAL This method distributes the rows from the producers to a set of
servers that are responsible for maintaining a given set of
partitions. Two or more servers can be loading the same
partition, but no servers are loading all partitions. Use this
distribution method when the input data is skewed and
combining query and load operations is not possible due to
memory constraints.

For example, in the following direct-path insert operation, the query and load portions
of the operation are combined into each query server;

INSERT /*+ APPEND PARALLEL(target_table, 16) PQ_DISTRIBUTE(target_table, NONE) */
INTO target_table
SELECT * FROM source_table;

In the following table creation example, the optimizer uses the partitioning of
target_table to distribute the rows:

CREATE /*+ PQ_DISTRIBUTE(target_table, PARTITION) */ TABLE target_table
NOLOGGING PARALLEL 16
PARTITION BY HASH (I_orderkey) PARTITIONS 512
AS SELECT * FROM source_table;

Control of Distribution for Joins

You control the distribution method for joins by specifying two distribution methods, as
shown in the lower branch of the syntax diagram, one distribution for the outer table
and one distribution for the inner table.

e outer_distribution is the distribution for the outer table.

2-128

ORACLE

Chapter 2
Comments

e inner_distribution is the distribution for the inner table.

The values of the distributions are HASH, BROADCAST, PARTITION, and NONE. Only six
combinations table distributions are valid, as described in Table 2-25 (page 2-129):

Table 2-25 Distribution Values for Joins

Distribution

Description

HASH, HASH

The rows of each table are mapped to consumer query servers,
using a hash function on the join keys. When mapping is
complete, each query server performs the join between a pair of
resulting partitions. This distribution is recommended when the
tables are comparable in size and the join operation is
implemented by hash-join or sort merge join.

BROADCAST, NONE

All rows of the outer table are broadcast to each query server.
The inner table rows are randomly partitioned. This distribution is
recommended when the outer table is very small compared with
the inner table. As a general rule, use this distribution when the
inner table size multiplied by the number of query servers is
greater than the outer table size.

NONE, BROADCAST

All rows of the inner table are broadcast to each consumer query
server. The outer table rows are randomly partitioned. This
distribution is recommended when the inner table is very small
compared with the outer table. As a general rule, use this
distribution when the inner table size multiplied by the number of
query servers is less than the outer table size.

PARTITION, NONE

The rows of the outer table are mapped using the partitioning of
the inner table. The inner table must be partitioned on the join
keys. This distribution is recommended when the number of
partitions of the outer table is equal to or nearly equal to a
multiple of the number of query servers; for example, 14
partitions and 15 query servers.

Note: The optimizer ignores this hint if the inner table is not
partitioned or not equijoined on the partitioning key.

NONE, PARTITION

The rows of the inner table are mapped using the partitioning of
the outer table. The outer table must be partitioned on the join
keys. This distribution is recommended when the number of
partitions of the outer table is equal to or nearly equal to a
multiple of the number of query servers; for example, 14
partitions and 15 query servers.

Note: The optimizer ignores this hint if the outer table is not
partitioned or not equijoined on the partitioning key.

NONE, NONE

Each query server performs the join operation between a pair of
matching partitions, one from each table. Both tables must be
equipartitioned on the join keys.

For example, given two tables r and s that are joined using a hash join, the following
guery contains a hint to use hash distribution:

SELECT /*+ORDERED PQ DISTRIBUTE(s HASH, HASH) USE_HASH (s)*/ col umm_li st

FROM r,s

WHERE r.c=s.c;

To broadcast the outer table r, the query is:

2-129

Chapter 2
Comments

SELECT /*+ORDERED PQ_DISTRIBUTE(s BROADCAST, NONE) USE_HASH (s) */ colum_li st
FROM r,s
WHERE r.c=s.c;

2.6.4.82 PQ_FILTER Hint

The PQ_FILTER hint instructs the optimizer on how to process rows when filtering
correlated subqueries.

e SERIAL: Process rows serially on the left and right sides of the filter. Use this option
when the overhead of parallelization is too high for the query, for example, when
the left side has very few rows.

* NONE: Process rows in parallel on the left and right sides of the filter. Use this option
when there is no skew in the distribution of the data on the left side of the filter and
you would like to avoid distribution of the left side, for example, due to the large
size of the left side.

e HASH: Process rows in parallel on the left side of the filter using a hash distribution.
Process rows serially on the right side of the filter. Use this option when there is no
skew in the distribution of data on the left side of the filter.

° RANDOM: Process rows in parallel on the left side of the filter using a random
distribution. Process rows serially on the right side of the filter. Use this option
when there is skew in the distribution of data on the left side of the filter.

2.6.4.83 PQ_SKEW Hint

-queryblock
O 0D

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

The PQ_SKEW hint advises the optimizer that the distribution of the values of the join
keys for a parallel join is highly skewed—that is, a high percentage of rows have the
same join key values. The table specified in t abl espec is the probe table of the hash
join.

2.6.4.84 PUSH_PRED Hint

(@)

tablespec

PUSH_PRED

0%

ORACLE 2-130

Chapter 2
Comments

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

The PUSH_PRED hint instructs the optimizer to push a join predicate into the view. For
example:

SELECT /*+ NO_MERGE(v) PUSH_PRED(v) */ *
FROM employees e,
(SELECT manager_id
FROM employees) v
WHERE e.manager_id = v.manager_id(+)
AND e.employee_id = 100;

2.6.4.85 PUSH_SUBQ Hint

ololCEDY0

(See Specifying a Query Block in a Hint (page 2-88))

The PUSH_SUBQ hint instructs the optimizer to evaluate nonmerged subqueries at the
earliest possible step in the execution plan. Generally, subqueries that are not merged
are executed as the last step in the execution plan. If the subquery is relatively
inexpensive and reduces the number of rows significantly, then evaluating the
subquery earlier can improve performance.

This hint has no effect if the subquery is applied to a remote table or one that is joined
using a merge join.

2.6.4.86 PX_JOIN_FILTER Hint

PRI FITER (D@D

This hint forces the optimizer to use parallel join bitmap filtering.

2.6.4.87 QB_NAME Hint

ORACLE

—>@»| QB_NAME P@a(quewblock)»@e@—)

(See Specifying a Query Block in a Hint (page 2-88))

Use the QB_NAME hint to define a name for a query block. This name can then be used
in a hint in the outer query or even in a hint in an inline view to affect query execution
on the tables appearing in the named query block.

If two or more query blocks have the same name, or if the same query block is hinted
twice with different names, then the optimizer ignores all the names and the hints
referencing that query block. Query blocks that are not named using this hint have
unique system-generated names. These names can be displayed in the plan table and
can also be used in hints within the query block, or in query block hints. For example:

2-131

Chapter 2
Comments

SELECT /*+ QB_NAME(gb) FULL(@gb e) */ employee_id, last_name
FROM employees e
WHERE last_name = "Smith";

2.6.4.88 RESULT_CACHE Hint

(P FESUT B ()

The RESULT_CACHE hint instructs the database to cache the results of the current query
or query fragment in memory and then to use the cached results in future executions
of the query or query fragment. The hint is recognized in the top-level query, the
subquery_factoring_cl ause, or FROM clause inline view. The cached results reside in the
result cache memory portion of the shared pool.

A cached result is automatically invalidated whenever a database object used in its
creation is successfully modified. This hint takes precedence over settings of the
RESULT_CACHE_MODE initialization parameter.

The query is eligible for result caching only if all functions entailed in the query—for
example, built-in or user-defined functions or virtual columns—are deterministic.

If the query is executed from OCI client and OCI client result cache is enabled, then
RESULT_CACHE hint enables client caching for the current query.

¢ See Also:

Oracle Database Performance Tuning Guide for information about using this
hint, Oracle Database Reference for information about the RESULT CACHE_MODE
initialization parameter, and Oracle Call Interface Programmer's Guide for
more information about the OCI result cache and usage guidelines

2.6.4.89 RETRY_ON_ROW_CHANGE Hint

—(7"+)| RETRY_ON_ROW_CHANGE (*/)>

Note:

The CHANGE_DUPKEY_ERROR_INDEX, IGNORE_ROW_ON_DUPKEY_INDEX, and
RETRY_ON_ROW_CHANGE hints are unlike other hints in that they have a semantic
effect. The general philosophy explained in Hints (page 2-87) does not apply
for these three hints.

This hint is valid only for UPDATE and DELETE operations. It is not supported for INSERT or
MERGE operations. When you specify this hint, the operation is retried when the

ORACLE 2-132

Chapter 2
Comments

ORA_ROWSCN for one or more rows in the set has changed from the time the set of rows
to be modified is determined to the time the block is actually modified.

See Also:

IGNORE_ROW_ON_DUPKEY_INDEX Hint (page 2-103) and
CHANGE_DUPKEY_ERROR_INDEX Hint (page 2-96)

2.6.4.90 REWRITE Hint

< (@0
P i A @

(See Specifying a Query Block in a Hint (page 2-88))

The REWRITE hint instructs the optimizer to rewrite a query in terms of materialized
views, when possible, without cost consideration. Use the REWRITE hint with or without a
view list. If you use REWRITE with a view list and the list contains an eligible materialized
view, then Oracle uses that view regardless of its cost.

Oracle does not consider views outside of the list. If you do not specify a view list, then
Oracle searches for an eligible materialized view and always uses it regardless of the
cost of the final plan.

¢ See Also:

e Oracle Database Concepts for more information on materialized views

e Oracle Database Data Warehousing Guide for more information on using
REWRITE with materialized views

2.6.4.91 STAR_TRANSFORMATION Hint

ORACLE

O® ®
@ STAR_TRANSFORMATION | @

(See Specifying a Query Block in a Hint (page 2-88))

The STAR_TRANSFORMATION hint instructs the optimizer to use the best plan in which the
transformation has been used. Without the hint, the optimizer could make a query
optimization decision to use the best plan generated without the transformation,
instead of the best plan for the transformed query. For example:

SELECT /*+ STAR_TRANSFORMATION */ s.time_id, s.prod_id, s.channel_id
FROM sales s, times t, products p, channels ¢

2-133

Chapter 2
Comments

WHERE s.time_id = t.time_id
AND s.prod_id = p.prod_id
AND s.channel_id = c.channel_id
AND c.channel_desc = "Tele Sales”;

Even if the hint is specified, there is no guarantee that the transformation will take
place. The optimizer generates the subqueries only if it seems reasonable to do so. If
no subqueries are generated, then there is no transformed query, and the best plan for
the untransformed query is used, regardless of the hint.

See Also:

e Oracle Database Data Warehousing Guide for a full discussion of star
transformation.

* Oracle Database Reference for more information on the
STAR_TRANSFORMATION_ENABLED initialization parameter.

2.6.4.92 STATEMENT_QUEUING Hint

—(7"+)| STATEMENT_QUEUNG |(*/)>

The NO_STATEMENT_QUEUING hint influences whether or not a statement is queued with
parallel statement queuing.

When PARALLEL_DEGREE_POLICY is not set to AUTO, this hint enables a statement to be
considered for parallel statement queuing, but to run only when enough parallel
processes are available to run at the requested DOP. The number of available parallel
execution servers, before queuing is enabled, is equal to the difference between the
number of parallel execution servers in use and the maximum number allowed in the
system, which is defined by the PARALLEL_SERVERS_TARGET initialization parameter.

For example:
SELECT /*+ STATEMENT_QUEUING */ emp.last_name, dpt.department_name

FROM employees emp, departments dpt
WHERE emp.department_id = dpt.department_id;

¢ See Also:
NO_STATEMENT QUEUING Hint (page 2-119)

2.6.4.93 UNNEST Hint

00D

ORACLE 2-134

Chapter 2
Comments

(See Specifying a Query Block in a Hint (page 2-88))

The UNNEST hint instructs the optimizer to unnest and merge the body of the subquery
into the body of the query block that contains it, allowing the optimizer to consider
them together when evaluating access paths and joins.

Before a subquery is unnested, the optimizer first verifies whether the statement is
valid. The statement must then pass heuristic and query optimization tests. The UNNEST
hint instructs the optimizer to check the subquery block for validity only. If the subquery
block is valid, then subquery unnesting is enabled without checking the heuristics or
costs.

¢ See Also:

e Collection Unnesting: Examples (page 19-117) for more information on
unnesting nested subqueries and the conditions that make a subquery
block valid

e Oracle Database SQL Tuning Guide for additional information on
subquery unnesting

2.6.4.94 USE_BAND Hint

queryblock
- EmEmo YN G 00

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

The USE_BAND hint instructs the optimizer to join each specified table with another row
source using a band join. For example:

SELECT /*+ USE_BAND(el e2) */
el.last_name
|l * has salary between 100 less and 100 more than *
|| e2.last_name AS "SALARY COMPARISON"
FROM employees el, employees e2
WHERE el.salary BETWEEN e2.salary - 100 AND e2.salary + 100;

2.6.4.95 USE_CONCAT Hint

ORACLE

O® ®
—(:)»| USE_CONCAT @

(See Specifying a Query Block in a Hint (page 2-88))

The USE_CONCAT hint instructs the optimizer to transform combined OR-conditions in the
WHERE clause of a query into a compound query using the UNION ALL set operator.
Without this hint, this transformation occurs only if the cost of the query using the

2-135

Chapter 2
Comments

concatenations is cheaper than the cost without them. The USE_CONCAT hint overrides
the cost consideration. For example:

SELECT /*+ USE_CONCAT */ *
FROM employees e
WHERE manager_id = 108
OR department_id = 110;

See Also:

The NO_EXPAND Hint (page 2-111), which is the opposite of this hint

2.6.4.96 USE_CUBE Hint

queryblock
- @EmO PN (G oo

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

When the right-hand side of the join is a cube, the USE_CUBE hint instructs the optimizer
to join each specified table with another row source using a cube join. If the optimizer
decides not to use the cube join based on statistical analysis, then you can use
USE_CUBE to override that decision.

2.6.4.97 USE_HASH Hint

queryblock
- EmEmo L YN G 00

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

The USE_HASH hint instructs the optimizer to join each specified table with another row
source using a hash join. For example:

SELECT /*+ USE_HASH(I h) */ *
FROM orders h, order_items 1|
WHERE I.order_id = h.order_id

AND l.order_id > 2400;

2.6.4.98 USE_MERGE Hint

@ queryblock
(DT (@)D

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

ORACLE 2-136

Chapter 2
Comments

The USE_MERGE hint instructs the optimizer to join each specified table with another row
source using a sort-merge join. For example:

SELECT /*+ USE_MERGE(employees departments) */ *
FROM employees, departments
WHERE employees.department_id = departments.department_id;

Use of the USE_NL and USE_MERGE hints is recommended with the LEADING and ORDERED
hints. The optimizer uses those hints when the referenced table is forced to be the
inner table of a join. The hints are ignored if the referenced table is the outer table.

2.6.4.99 USE_NL Hint

The USE_NL hint instructs the optimizer to join each specified table to another row
source with a nested loops join, using the specified table as the inner table.

queryblock
EEDOL PN () o0

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89))

The USE_NL hint instructs the optimizer to join each specified table to another row
source with a nested loops join, using the specified table as the inner table.

Use of the USE_NL and USE_MERGE hints is recommended with the LEADING and ORDERED
hints. The optimizer uses those hints when the referenced table is forced to be the
inner table of a join. The hints are ignored if the referenced table is the outer table.

In the following example, where a nested loop is forced through a hint, orders is
accessed through a full table scan and the filter condition I.order_id = h.order_id is
applied to every row. For every row that meets the filter condition, order_items is
accessed through the index order_id.

SELECT /*+ USE_NL(1 h) */ h_customer_id, l.unit_price * l.quantity
FROM orders h, order_items 1
WHERE 1.order_id = h.order_id;

Adding an INDEX hint to the query could avoid the full table scan on orders, resulting in

an execution plan similar to one used on larger systems, even though it might not be
particularly efficient here.

2.6.4.100 USE_NL_WITH_INDEX Hint

-queryblock A W
—>@a| USE_NL_WITH_INDEX |->@ © (tablespec) @@

(See Specifying a Query Block in a Hint (page 2-88), tablespec::= (page 2-89),
indexspec::= (page 2-89))

The USE_NL_WITH_INDEX hint instructs the optimizer to join the specified table to another
row source with a nested loops join using the specified table as the inner table. For
example:

ORACLE 2-137

Chapter 2
Database Objects

SELECT /*+ USE_NL_WITH_INDEX(l item_product_ix) */ *
FROM orders h, order_items 1
WHERE 1.order_id = h.order_id
AND I.order_id > 2400;

The following conditions apply:

* If no index is specified, then the optimizer must be able to use some index with at
least one join predicate as the index key.

* If anindex is specified, then the optimizer must be able to use that index with at
least one join predicate as the index key.

2.7 Database Objects

Oracle Database recognizes objects that are associated with a particular schema and
objects that are not associated with any particular schema, as described in the
sections that follow.

2.7.1 Schema Objects

ORACLE

A schema is a collection of logical structures of data, or schema objects. A schema is
owned by a database user and has the same name as that user. Each user owns a
single schema. Schema objects can be created and manipulated with SQL and include
the following types of objects:

Analytic views
Attribute dimensions
Clusters

Constraints

Database links
Database triggers
Dimensions

External procedure libraries
Hierarchies
Index-organized tables
Indexes

Indextypes

Java classes

Java resources

Java sources

Join groups
Materialized views
Materialized view logs
Mining models

Object tables

Object types

Object views
Operators

Packages

Sequences

Stored functions

2-138

Chapter 2
Database Object Names and Qualifiers

Stored procedures
Synonyms

Tables

Views

Zone maps

2.7.2 Nonschema Objects

Other types of objects are also stored in the database and can be created and
manipulated with SQL but are not contained in a schema:

Contexts
Directories
Editions

Flashback archives
Lockdown profiles
Profiles

Restore points
Roles

Rollback segments
Tablespaces
Tablespace sets
Unified audit policies
Users

In this reference, each type of object is described in the section devoted to the
statement that creates the database object. These statements begin with the keyword
CREATE. For example, for the definition of a cluster, see CREATE CLUSTER

(page 13-32).

See Also:

Oracle Database Concepts for an overview of database objects

You must provide names for most types of database objects when you create them.
These names must follow the rules listed in the sections that follow.

2.8 Database Object Names and Qualifiers

ORACLE

Some database objects are made up of parts that you can or must name, such as the
columns in a table or view, index and table partitions and subpartitions, integrity
constraints on a table, and objects that are stored within a package, including
procedures and stored functions. This section provides:

* Rules for naming database objects and database object location qualifiers

» Guidelines for naming database objects and qualifiers

2-139

Chapter 2
Database Object Names and Qualifiers

Note:

Oracle uses system-generated names beginning with "SYS_" for implicitly
generated database objects and subobjects, and names beginning with "0RA "
for some Oracle-supplied objects. Oracle discourages you from using these
prefixes in the names you explicitly provide to your database objects and
subobjects to avoid possible conflict in name resolution.

2.8.1 Database Object Naming Rules

Every database object has a name. In a SQL statement, you represent the name of an
object with a quoted identifier or a nonquoted identifier.

ORACLE

A quoted identifier begins and ends with double quotation marks (*). If you name a
schema object using a quoted identifier, then you must use the double quotation
marks whenever you refer to that object.

A nonquoted identifier is not surrounded by any punctuation.

You can use either quoted or nonquoted identifiers to name any database object.
However, database names, global database names, database link names, disk group
names, and pluggable database (PDB) names are always case insensitive and are
stored as uppercase. If you specify such names as quoted identifiers, then the
guotation marks are silently ignored.

See Also:

CREATE USER (page 15-169) for additional rules for naming users and
passwords

Note:

Oracle does not recommend using quoted identifiers for database object
names. These quoted identifiers are accepted by SQL*Plus, but they may not
be valid when using other tools that manage database objects.

The following list of rules applies to both quoted and nonquoted identifiers unless
otherwise indicated:

1.

The maximum length of identifier names depends on the value of the COMPATIBLE
initialization parameter.

* If COMPATIBLE is set to a value of 12.2 or higher, then names must be
from 1 to 128 bytes long with these exceptions:

— Names of databases are limited to 8 bytes.

— Names of disk groups, pluggable databases (PDBs), rollback segments,
tablespaces, and tablespace sets are limited to 30 bytes.

2-140

ORACLE

Chapter 2
Database Object Names and Qualifiers

If an identifier includes multiple parts separated by periods, then each attribute
can be up to 128 bytes long. Each period separator, as well as any
surrounding double quotation marks, counts as one byte. For example,
suppose you identify a column like this:

"schema'."tabl e"."col um"

The schema name can be 128 bytes, the table name can be 128 bytes, and
the column name can be 128 bytes. Each of the quotation marks and periods
is a single-byte character, so the total length of the identifier in this example
can be up to 392 bytes.

 If COMPATIBLE is set to a value lower than 12.2, then names must be from
1 to 30 bytes long with these exceptions:

— Names of databases are limited to 8 bytes.
— Names of database links can be as long as 128 bytes.

If an identifier includes multiple parts separated by periods, then each attribute
can be up to 30 bytes long. Each period separator, as well as any surrounding
double quotation marks, counts as one byte. For example, suppose you
identify a column like this:

"schema'."tabl e"."col um™

The schema name can be 30 bytes, the table name can be 30 bytes, and the
column name can be 30 bytes. Each of the quotation marks and periods is a
single-byte character, so the total length of the identifier in this example can be
up to 98 bytes.

Nonquoted identifiers cannot be Oracle SQL reserved words. Quoted identifiers
can be reserved words, although this is not recommended.

Depending on the Oracle product you plan to use to access a database object,
names might be further restricted by other product-specific reserved words.

Note:

The reserved word ROWID is an exception to this rule. You cannot use the
uppercase word ROWID, either quoted or nonquoted, as a column name.
However, you can use the uppercase word as a quoted identifier that is not a
column name, and you can use the word with one or more lowercase letters
(for example, "Rowid" or "rowid") as any quoted identifier, including a column
name.

See Also:

e Oracle SQL Reserved Words (page E-1) for a listing of all Oracle SQL
reserved words

e The manual for a specific product, such as Oracle Database PL/SQL
Language Reference, for a list of the reserved words of that product

2-141

ORACLE

Chapter 2
Database Object Names and Qualifiers

The Oracle SQL language contains other words that have special meanings.
These words include data types, schema names, function names, the dummy
system table DUAL, and keywords (the uppercase words in SQL statements, such
as DIMENSION, SEGMENT, ALLOCATE, DISABLE, and so forth). These words are not
reserved. However, Oracle uses them internally in specific ways. Therefore, if you
use these words as names for objects and object parts, then your SQL statements
may be more difficult to read and may lead to unpredictable results.

In particular, do not use words beginning with SYS_ or ORA_ as schema object
names, and do not use the names of SQL built-in functions for the names of
schema objects or user-defined functions.

¢ See Also:

* Oracle SQL Keywords (page E-4) for information how to obtain a list of
keywords

o Data Types (page 2-1), About SQL Functions (page 7-2), and Selecting
from the DUAL Table (page 9-18)

You should use characters from the ASCII repertoire in database names, global
database names, and database link names, because these characters provide
optimal compatibility across different platforms and operating systems. You must
use only characters from the ASCII repertoire in names of common users and
common roles in a multitenant container database (CDB).

You can include multibyte characters in passwords.

Nonquoted identifiers must begin with an alphabetic character from your database
character set. Quoted identifiers can begin with any character.

Nonquoted identifiers can contain only alphanumeric characters from your
database character set and the underscore (_), dollar sign ($), and pound sign (#).
Database links can also contain periods (.) and "at" signs (@).

Quoted identifiers can contain any characters and punctuations marks as well as
spaces. However, neither quoted nor nonquoted identifiers can contain double
guotation marks or the null character (\0).

Within a namespace, no two objects can have the same name.
The following schema objects share one namespace:
e Packages

e Private synonyms

* Sequences

e Stand-alone procedures

e Stand-alone stored functions

* Tables

e User-defined operators

e User-defined types

* Views

Each of the following schema objects has its own namespace:

2-142

Chapter 2
Database Object Names and Qualifiers

e Clusters

e Constraints

» Database triggers
* Dimensions

* Indexes

* Materialized views (When you create a materialized view, the database
creates an internal table of the same name. This table has the same
namespace as the other tables in the schema. Therefore, a schema cannot
contain a table and a materialized view of the same name.)

e Private database links

Because tables and sequences are in the same namespace, a table and a
sequence in the same schema cannot have the same name. However, tables and
indexes are in different namespaces. Therefore, a table and an index in the same
schema can have the same name.

Each schema in the database has its own namespaces for the objects it contains.
This means, for example, that two tables in different schemas are in different
namespaces and can have the same name.

Each of the following nonschema objects also has its own namespace:
» Editions

e Parameter files (PFILES) and server parameter files (SPFILES)

* Profiles

* Public database links

e Public synonyms

e Tablespaces

* Userroles

Because the objects in these hamespaces are not contained in schemas, these
namespaces span the entire database.

9. Nonquoted identifiers are not case sensitive. Oracle interprets them as uppercase.
Quoted identifiers are case sensitive.

By enclosing names in double quotation marks, you can give the following names
to different objects in the same namespace:

"employees"
"Employees"
"EMPLOYEES"

Note that Oracle interprets the following names the same, so they cannot be used
for different objects in the same namespace:

employees
EMPLOYEES
"EMPLOYEES"

10. When Oracle stores or compares identifiers in uppercase, the uppercase form of
each character in the identifiers is determined by applying the uppercasing rules of
the database character set. Language-specific rules determined by the session

ORACLE 2-143

Chapter 2
Database Object Names and Qualifiers

setting NLS_SORT are not considered. This behavior corresponds to applying the
SQL function UPPER to the identifier rather than the function NLS_UPPER.

The database character set uppercasing rules can yield results that are incorrect
when viewed as being in a certain natural language. For example, small letter
sharp s ("3"), used in German, does not have an uppercase form according to the
database character set uppercasing rules. It is not modified when an identifier is
converted into uppercase, while the expected uppercase form in German is the
sequence of two characters capital letter S ("SS"). Similarly, the uppercase form of
small letter i, according to the database character set uppercasing rules, is capital
letter 1. However, the expected uppercase form in Turkish and Azerbaijani is
capital letter | with dot above.

The database character set uppercasing rules ensure that identifiers are
interpreted the same in any linguistic configuration of a session. If you want an
identifier to look correctly in a certain natural language, then you can quote it to
preserve the lowercase form or you can use the linguistically correct uppercase
form whenever you use that identifier.

11. Columns in the same table or view cannot have the same name. However,
columns in different tables or views can have the same name.

12. Procedures or functions contained in the same package can have the same name,
if their arguments are not of the same number and data types. Creating multiple
procedures or functions with the same name in the same package with different
arguments is called overloading the procedure or function.

2.8.2 Schema Object Naming Examples

The following examples are valid schema object names:

last_name

horse

hr.hire_date

"EVEN THIS & THAT!"
a_very_long_and_valid_name

All of these examples adhere to the rules listed in Database Object Naming Rules
(page 2-140).

2.8.3 Schema Object Naming Guidelines

ORACLE

Here are several helpful guidelines for naming objects and their parts:

» Use full, descriptive, pronounceable names (or well-known abbreviations).
e Use consistent naming rules.
« Use the same name to describe the same entity or attribute across tables.

When naming objects, balance the objective of keeping names short and easy to use
with the objective of making names as descriptive as possible. When in doubt, choose
the more descriptive name, because the objects in the database may be used by
many people over a period of time. Your counterpart ten years from now may have
difficulty understanding a table column with a name like pmdd instead of
payment_due_date.

2-144

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

Using consistent naming rules helps users understand the part that each table plays in
your application. One such rule might be to begin the names of all tables belonging to
the FINANCE application with fin_.

Use the same names to describe the same things across tables. For example, the
department number columns of the sample employees and departments tables are both
named department_id.

2.9 Syntax for Schema Objects and Parts in SQL
Statements

This section tells you how to refer to schema objects and their parts in the context of a
SQL statement. This section shows you:

* The general syntax for referring to an object

* How Oracle resolves a reference to an object

* How to refer to objects in schemas other than your own

* How to refer to objects in remote databases

* How to refer to table and index partitions and subpartitions

The following diagram shows the general syntax for referring to an object or a part:

database_object_or_part::=

__
(object)}

(dblink::= (page 2-148))
where:

* object is the name of the object.

» schem is the schema containing the object. The schema qualifier lets you refer to
an object in a schema other than your own. You must be granted privileges to
refer to objects in other schemas. If you omit schena, then Oracle assumes that you
are referring to an object in your own schema.

Only schema objects can be qualified with schema. Schema objects are shown with
list item 8. Nonschema objects, also shown with list item 8, cannot be qualified
with schema because they are not schema objects. An exception is public
synonyms, which can optionally be qualified with "PUBLIC". The quotation marks
are required.

e part is a part of the object. This identifier lets you refer to a part of a schema
object, such as a column or a partition of a table. Not all types of objects have
parts.

* dblink applies only when you are using the Oracle Database distributed
functionality. This is the name of the database containing the object. The dbl i nk
qualifier lets you refer to an object in a database other than your local database. If
you omit dbl i nk, then Oracle assumes that you are referring to an object in your

ORACLE 2-145

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

local database. Not all SQL statements allow you to access objects on remote
databases.

You can include spaces around the periods separating the components of the
reference to the object, but it is conventional to omit them.

2.9.1 How Oracle Database Resolves Schema Object References

ORACLE

When you refer to an object in a SQL statement, Oracle considers the context of the
SQL statement and locates the object in the appropriate namespace. After locating the
object, Oracle performs the operation specified by the statement on the object. If the
named object cannot be found in the appropriate namespace, then Oracle returns an
error.

The following example illustrates how Oracle resolves references to objects within
SQL statements. Consider this statement that adds a row of data to a table identified
by the name departments:

INSERT INTO departments
VALUES (280, "ENTERTAINMENT _CLERK®, 206, 1700);

Based on the context of the statement, Oracle determines that departments can be:

* Atable in your own schema

* Aview in your own schema

e A private synonym for a table or view
* A public synonym

Oracle always attempts to resolve an object reference within the namespaces in your
own schema before considering namespaces outside your schema. In this example,
Oracle attempts to resolve the name departments as follows:

1. First, Oracle attempts to locate the object in the namespace in your own schema
containing tables, views, and private synonyms. If the object is a private synonym,
then Oracle locates the object for which the synonym stands. This object could be
in your own schema, another schema, or on another database. The object could
also be another synonym, in which case Oracle locates the object for which this
synonym stands.

2. If the object is in the namespace, then Oracle attempts to perform the statement
on the object. In this example, Oracle attempts to add the row of data to
departments. If the object is not of the correct type for the statement, then Oracle
returns an error. In this example, departments must be a table, view, or a private
synonym resolving to a table or view. If departments is a sequence, then Oracle
returns an error.

3. If the object is not in any namespace searched in thus far, then Oracle searches
the namespace containing public synonyms. If the object is in that namespace,
then Oracle attempts to perform the statement on it. If the object is not of the
correct type for the statement, then Oracle returns an error. In this example, if
departments is a public synonym for a sequence, then Oracle returns an error.

If a public synonym has any dependent tables or user-defined types, then you cannot
create an object with the same name as the synonym in the same schema as the
dependent objects.

2-146

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

If a synonym does not have any dependent tables or user-defined types, then you can
create an object with the same name in the same schema as the dependent objects.
Oracle invalidates any dependent objects and attempts to revalidate them when they
are next accessed.

See Also:

Oracle Database PL/SQL Language Reference for information about how
PL/SQL resolves identifier names

2.9.2 References to Objects in Other Schemas

To refer to objects in schemas other than your own, prefix the object name with the
schema name:

schema.obj ect

For example, this statement drops the employees table in the sample schema hr:

DROP TABLE hr.employees;

2.9.3 References to Objects in Remote Databases

To refer to objects in databases other than your local database, follow the object name
with the name of the database link to that database. A database link is a schema
object that causes Oracle to connect to a remote database to access an object there.
This section tells you:

 How to create database links

* How to use database links in your SQL statements

2.9.3.1 Creating Database Links

You create a database link with the statement CREATE DATABASE LINK
(page 13-69). The statement lets you specify this information about the database link:

e The name of the database link
* The database connect string to access the remote database
e The username and password to connect to the remote database

Oracle stores this information in the data dictionary.

2.9.3.1.1 Database Link Names

ORACLE

When you create a database link, you must specify its name. Database link names are
different from names of other types of objects. They can be as long as 128 bytes and
can contain periods (.) and the "at" sign (@).

The name that you give to a database link must correspond to the name of the
database to which the database link refers and the location of that database in the
hierarchy of database names. The following syntax diagram shows the form of the
name of a database link:

2-147

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

dblink::=

—(database)}

[PO | A Gormecon e

where:

dat abase should specify the nane portion of the global name of the remote database
to which the database link connects. This global name is stored in the data
dictionary of the remote database. You can see this name in the GLOBAL_NAME data
dictionary view.

domai n should specify the donai n portion of the global name of the remote database
to which the database link connects. If you omit domai n from the name of a
database link, then Oracle qualifies the database link name with the domain of
your local database as it currently exists in the data dictionary.

connection_qualifier lets you further qualify a database link. Using connection
qualifiers, you can create multiple database links to the same database. For
example, you can use connection qualifiers to create multiple database links to
different instances of the Oracle Real Application Clusters that access the same
database.

See Also:

Oracle Database Administrator’'s Guidefor more information on connection
qualifiers

The combination dat abase. domai n is sometimes called the service name.

See Also:

Oracle Database Net Services Administrator's Guide

2.9.3.1.2 Username and Password

Oracle uses the username and password to connect to the remote database. The

username and password for a database link are optional.

2.9.3.1.3 Database Connect String

ORACLE

The database connect string is the specification used by Oracle Net to access the
remote database. For information on writing database connect strings, see the Oracle
Net documentation for your specific network protocol. The database connect string for
a database link is optional.

2-148

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

2.9.3.2 References to Database Links

Database links are available only if you are using Oracle distributed functionality.
When you issue a SQL statement that contains a database link, you can specify the
database link name in one of these forms:

The complete database link name as stored in the data dictionary, including the
dat abase, domai n, and optional connecti on_qual i fi er components.

The partial database link name is the dat abase and optional connecti on_qual i fier
components, but not the donai n component.

Oracle performs these tasks before connecting to the remote database:

1.

If the database link name specified in the statement is partial, then Oracle expands
the name to contain the domain of the local database as found in the global
database name stored in the data dictionary. (You can see the current global
database name in the GLOBAL_NAME data dictionary view.)

Oracle first searches for a private database link in your own schema with the same
name as the database link in the statement. Then, if necessary, it searches for a
public database link with the same name.

* Oracle always determines the username and password from the first matching
database link (either private or public). If the first matching database link has
an associated username and password, then Oracle uses it. If it does not have
an associated username and password, then Oracle uses your current
username and password.

» If the first matching database link has an associated database string, then
Oracle uses it. Otherwise Oracle searches for the next matching (public)
database link. If no matching database link is found, or if no matching link has
an associated database string, then Oracle returns an error.

Oracle uses the database string to access the remote database. After accessing
the remote database, if the value of the GLOBAL_NAMES parameter is true, then
Oracle verifies that the dat abase. donai n portion of the database link name matches
the complete global name of the remote database. If this condition is true, then
Oracle proceeds with the connection, using the username and password chosen in
Step 2. If not, Oracle returns an error.

If the connection using the database string, username, and password is
successful, then Oracle attempts to access the specified object on the remote
database using the rules for resolving object references and referring to objects in
other schemas discussed earlier in this section.

You can disable the requirement that the dat abase. domai n portion of the database link
name must match the complete global name of the remote database by setting to
FALSE the initialization parameter GLOBAL_NAMES or the GLOBAL_NAMES parameter of the
ALTER SYSTEM or ALTER SESSION statement.

ORACLE

See Also:

Oracle Database Administrator’s Guide for more information on remote name
resolution

2-149

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

2.9.4 References to Partitioned Tables and Indexes

ORACLE

Tables and indexes can be partitioned. When partitioned, these schema objects
consist of a number of parts called partitions, all of which have the same logical
attributes. For example, all partitions in a table share the same column and constraint
definitions, and all partitions in an index share the same index columns.

Partition-extended and subpartition-extended names let you perform some partition-
level and subpatrtition-level operations, such as deleting all rows from a partition or
subpartition, on only one partition or subpartition. Without extended names, such
operations would require that you specify a predicate (WHERE clause). For range- and
list-partitioned tables, trying to phrase a partition-level operation with a predicate can
be cumbersome, especially when the range partitioning key uses more than one
column. For hash partitions and subpartitions, using a predicate is more difficult still,
because these partitions and subpartitions are based on a system-defined hash
function.

Partition-extended names let you use partitions as if they were tables. An advantage of
this method, which is most useful for range-partitioned tables, is that you can build
partition-level access control mechanisms by granting (or revoking) privileges on these
views to (or from) other users or roles. To use a partition as a table, create a view by
selecting data from a single partition, and then use the view as a table.

Syntax

You can specify partition-extended or subpartition-extended table names in any SQL
statement in which the partition_ext ended_name or subpartition_ext ended_name element
appears in the syntax.

partition_extended_name::=

PARTITION |{panition)

l partition_key_value '

PARTITION |_>| FOR

subpartition_extended_name::=

SUBPARTITION |->(subpanition)

(M

2
subpartition_key_value

SUBPARTITION |->| FOR

The DML statements INSERT, UPDATE, and DELETE and the ANALYZE statement require
parentheses around the partition or subpartition name. This small distinction is
reflected in the partition_extension_cl ause:

2-150

ORACLE

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

partition_extension_clause::=

M

(N
partition_key_value
subpartition)

PARTITION

SUBPARTITION

(N
subpartition_key_value

In partition_extended_nane, subpartition_extended_nane, and
partition_extension_clause, the PARTITION FOR and SUBPARTITION FOR clauses let you
refer to a partition without using its name. They are valid with any type of partitioning
and are especially useful for interval partitions. Interval partitions are created
automatically as needed when data is inserted into a table.

For the respective partition_key_val ue or subpartition_key_val ue, specify one value
for each partitioning key column. For multicolumn partitioning keys, specify one value
for each partitioning key. For composite partitions, specify one value for each
partitioning key, followed by one value for each subpartitioning key. All partitioning key
values are comma separated. For interval partitions, you can specify only one
partition_key val ue, and it must be a valid NUMBER or datetime value. Your SQL
statement will operate on the partition or subpartitions that contain the values you

specify.

See Also:

The CREATE TABLE INTERVAL Clause (page 15-98) for more information on
interval partitions

Restrictions on Extended Names

Currently, the use of partition-extended and subpartition-extended table names has
the following restrictions:

e No remote tables: A partition-extended or subpartition-extended table name
cannot contain a database link (dblink) or a synonym that translates to a table with
a dblink. To use remote partitions and subpartitions, create a view at the remote
site that uses the extended table name syntax and then refer to the remote view.

e No synonyms: A partition or subpartition extension must be specified with a base
table. You cannot use synonyms, views, or any other objects.

e The PARTITION FOR and SUBPARTITION FOR clauses are not valid for DDL operations
on views.

* Inthe PARTITION FOR and SUBPARTITION FOR clauses, you cannot specify the
keywords DEFAULT or MAXVALUE or a bind variable for the partition_key_val ue or
subpartition_key_val ue.

2-151

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

e Inthe PARTITION and SUBPARTITION clauses, you cannot specify a bind variable for
the partition or subpartition name.

Example

In the following statement, sales is a partitioned table with partition sales g1 _2000. You
can create a view of the single partition sales_g1_2000, and then use it as if it were a
table. This example deletes rows from the partition.

CREATE VIEW Q1_2000_sales AS
SELECT *
FROM sales PARTITION (SALES Q1_2000);

DELETE FROM Q1_2000_sales
WHERE amount_sold < 0;

2.9.5 References to Object Type Attributes and Methods

ORACLE

To refer to object type attributes or methods in a SQL statement, you must fully qualify
the reference with a table alias. Consider the following example from the sample
schema oe, which contains a type cust_address_typ and a table customers with a
cust_address column based on the cust_address_typ:

CREATE TYPE cust_address_typ
0ID "82A4AF6A4CD1656DE034080020EQEE3D”

AS OBJECT
(street_address VARCHAR2(40),
postal_code VARCHAR2(10),
city VARCHAR2(30),
state_province VARCHAR2(10),
country_id CHAR(2));
/
CREATE TABLE customers
(customer_id NUMBER(6),

cust_first_name VARCHAR2(20) CONSTRAINT cust_fname_nn NOT NULL,
cust_last_name VARCHAR2(20) CONSTRAINT cust_lIname_nn NOT NULL,
cust_address cust_address_typ,

In a SQL statement, reference to the postal_code attribute must be fully qualified using
a table alias, as illustrated in the following example:

SELECT c.cust_address.postal_code
FROM customers c;

UPDATE customers ¢
SET c.cust_address.postal_code = "14621-2604"
WHERE c.cust_address.city = "Rochester”
AND c.cust_address.state province = "NY";

To reference a member method that does not accept arguments, you must provide
empty parentheses. For example, the sample schema oe contains an object table
categories_tab, based on catalog_typ, which contains the member function
getCatalogName. In order to call this method in a SQL statement, you must provide
empty parentheses as shown in this example:

SELECT TREAT(VALUE(c) AS catalog_typ).getCatalogName() "Catalog Type"
FROM categories_tab ¢
WHERE category_id = 90;

2-152

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

Catalog Type

online catalog

ORACLE" 2-153

Pseudocolumns

A pseudocolumn behaves like a table column, but is not actually stored in the table.
You can select from pseudocolumns, but you cannot insert, update, or delete their
values. A pseudocolumn is also similar to a function without arguments (refer to
Functions (page 7-1)). However, functions without arguments typically return the
same value for every row in the result set, whereas pseudocolumns typically return a
different value for each row.

This chapter contains the following sections:

» Hierarchical Query Pseudocolumns (page 3-1)
* Sequence Pseudocolumns (page 3-3)

* Version Query Pseudocolumns (page 3-6)

¢ COLUMN_VALUE Pseudocolumn (page 3-7)
* OBJECT_ID Pseudocolumn (page 3-8)

e OBJECT_VALUE Pseudocolumn (page 3-9)

* ORA_ROWSCN Pseudocolumn (page 3-9)

« ROWID Pseudocolumn (page 3-10)

* ROWNUM Pseudocolumn (page 3-11)
XMLDATA Pseudocolumn (page 3-12)

3.1 Hierarchical Query Pseudocolumns

The hierarchical query pseudocolumns are valid only in hierarchical queries. The
hierarchical query pseudocolumns are:

e CONNECT_BY_ISCYCLE Pseudocolumn (page 3-1)
* CONNECT_BY_ISLEAF Pseudocolumn (page 3-2)
* LEVEL Pseudocolumn (page 3-2)

To define a hierarchical relationship in a query, you must use the CONNECT BY clause.

3.1.1 CONNECT BY _ISCYCLE Pseudocolumn

ORACLE

The CONNECT_BY_ISCYCLE pseudocolumn returns 1 if the current row has a child which is
also its ancestor. Otherwise it returns 0.

You can specify CONNECT_BY_ISCYCLE only if you have specified the NOCYCLE parameter of
the CONNECT BY clause. NOCYCLE enables Oracle to return the results of a query that
would otherwise fail because of a CONNECT BY loop in the data.

3-1

Chapter 3
Hierarchical Query Pseudocolumns

See Also:

Hierarchical Queries (page 9-2) for more information about the NOCYCLE
parameter and Hierarchical Query Examples (page 9-5) for an example that
uses the CONNECT_BY_ISCYCLE pseudocolumn

3.1.2 CONNECT _BY_ISLEAF Pseudocolumn

The CONNECT_BY_ISLEAF pseudocolumn returns 1 if the current row is a leaf of the tree
defined by the CONNECT BY condition. Otherwise it returns 0. This information indicates
whether a given row can be further expanded to show more of the hierarchy.

CONNECT_BY_ISLEAF Example

The following example shows the first three levels of the hr.employees table, indicating
for each row whether it is a leaf row (indicated by 1 in the IsLeaf column) or whether it
has child rows (indicated by 0 in the IsLeaf column):

SELECT last_name "Employee™, CONNECT_BY_ISLEAF "lIsLeaf",
LEVEL, SYS_CONNECT BY_ PATH(last_name, "/%) "Path"
FROM employees
WHERE LEVEL <= 3 AND department_id = 80
START WITH employee_id = 100
CONNECT BY PRIOR employee_id = manager_id AND LEVEL <= 4
ORDER BY "Employee", "lIsLeaf";

Employee IsLeaf LEVEL Path
Abel 1 3 /King/Zlotkey/Abel
Ande 1 3 /King/Errazuriz/Ande
Banda 1 3 /King/Errazuriz/Banda
Bates 1 3 /King/Cambrault/Bates
Bernstein 1 3 /King/Russell/Bernstein
Bloom 1 3 /King/Cambrault/Bloom
Cambrault 0 2 /King/Cambrault
Cambrault 1 3 /King/Russell/Cambrault
Doran 1 3 /King/Partners/Doran
Errazuriz 0 2 /King/Errazuriz
Fox 1 3 /King/Cambrault/Fox

See Also:

Hierarchical Queries (page 9-2) and SYS_CONNECT_BY_PATH
(page 7-331)

3.1.3 LEVEL Pseudocolumn

For each row returned by a hierarchical query, the LEVEL pseudocolumn returns 1 for a
root row, 2 for a child of a root, and so on. A root row is the highest row within an
inverted tree. A child row is any nonroot row. A parent row is any row that has

ORACLE 3-2

Chapter 3
Sequence Pseudocolumns

children. A leaf row is any row without children. Figure 3-1 (page 3-3) shows the
nodes of an inverted tree with their LEVEL values.

Figure 3-1 Hierarchical Tree

Level 1 5;¥2ﬁt

Level 2 p"’gﬁ?é/ p%rﬁ?(jt/

Lovels | parent | | i pare

Level 4 chila/ onild/ child/
See Also:

Hierarchical Queries (page 9-2) for information on hierarchical queries in
general and IN Condition (page 6-33) for restrictions on using the LEVEL
pseudocolumn

3.2 Sequence Pseudocolumns

ORACLE

A sequence is a schema object that can generate unique sequential values. These
values are often used for primary and unique keys. You can refer to sequence values
in SQL statements with these pseudocolumns:

* CURRVAL: Returns the current value of a sequence
e NEXTVAL: Increments the sequence and returns the next value
You must qualify CURRVAL and NEXTVAL with the name of the sequence:

sequence.CURRVAL
sequence .NEXTVAL

To refer to the current or next value of a sequence in the schema of another user, you
must have been granted either SELECT object privilege on the sequence or SELECT ANY
SEQUENCE system privilege, and you must qualify the sequence with the schema
containing it:

schema.sequence.CURRVAL
schema.sequence .NEXTVAL

To refer to the value of a sequence on a remote database, you must qualify the
sequence with a complete or partial name of a database link:

schema.sequence .CURRVAL@dbI i nk
schema.sequence .NEXTVAL@dbI i nk

3-3

Chapter 3
Sequence Pseudocolumns

A sequence can be accessed by many users concurrently with no waiting or locking.

See Also:

References to Objects in Remote Databases (page 2-147) for more
information on referring to database links

3.2.1 Where to Use Sequence Values

You can use CURRVAL and NEXTVAL in the following locations:

* The select list of a SELECT statement that is not contained in a subquery,
materialized view, or view

e The select list of a subquery in an INSERT statement
e The VALUES clause of an INSERT statement

e The SET clause of an UPDATE statement

Restrictions on Sequence Values
You cannot use CURRVAL and NEXTVAL in the following constructs:

* A subquery in a DELETE, SELECT, or UPDATE statement

e A query of a view or of a materialized view

e A SELECT statement with the DISTINCT operator

* A SELECT statement with a GROUP BY clause or ORDER BY clause

e A SELECT statement that is combined with another SELECT statement with the UNION,
INTERSECT, or MINUS set operator

e The WHERE clause of a SELECT statement
e The condition of a CHECK constraint

Within a single SQL statement that uses CURRVAL or NEXTVAL, all referenced LONG
columns, updated tables, and locked tables must be located on the same database.

3.2.2 How to Use Sequence Values

ORACLE

When you create a sequence, you can define its initial value and the increment
between its values. The first reference to NEXTVAL returns the initial value of the
sequence. Subsequent references to NEXTVAL increment the sequence value by the
defined increment and return the new value. Any reference to CURRVAL always returns
the current value of the sequence, which is the value returned by the last reference to
NEXTVAL.

Before you use CURRVAL for a sequence in your session, you must first initialize the
sequence with NEXTVAL. Refer to CREATE SEQUENCE (page 15-1) for information on
sequences.

Within a single SQL statement containing a reference to NEXTVAL, Oracle increments
the sequence once:

3-4

Chapter 3
Sequence Pseudocolumns

» For each row returned by the outer query block of a SELECT statement. Such a
query block can appear in the following places:

— Atop-level SELECT statement

— An INSERT ... SELECT statement (either single-table or multitable). For a
multitable insert, the reference to NEXTVAL must appear in the VALUES clause,
and the sequence is updated once for each row returned by the subquery,
even though NEXTVAL may be referenced in multiple branches of the multitable
insert.

— A CREATE TABLE ... AS SELECT statement

— A CREATE MATERIALIZED VIEW ... AS SELECT statement
* For each row updated in an UPDATE statement
» For each INSERT statement containing a VALUES clause

* For each INSERT ... [ALL | FIRST] statement (multitable insert). A multitable insert is
considered a single SQL statement. Therefore, a reference to the NEXTVAL of a
sequence will increase the sequence only once for each input record coming from
the SELECT portion of the statement. If NEXTVAL is specified more than once in any
part of the INSERT ... [ALL | FIRST] statement, then the value will be the same for all
insert branches, regardless of how often a given record might be inserted.

* For each row merged by a MERGE statement. The reference to NEXTVAL can appear
in the merge_insert _cl ause or the merge_updat e_cl ause or both. The NEXTVALUE value
is incremented for each row updated and for each row inserted, even if the
sequence number is not actually used in the update or insert operation. If NEXTVAL
is specified more than once in any of these locations, then the sequence is
incremented once for each row and returns the same value for all occurrences of
NEXTVAL for that row.

e For each input row in a multitable INSERT ALL statement. NEXTVAL is incremented
once for each row returned by the subquery, regardless of how many occurrences
of the i nsert _i nto_cl ause map to each row.

If any of these locations contains more than one reference to NEXTVAL, then Oracle
increments the sequence once and returns the same value for all occurrences of
NEXTVAL.

If any of these locations contains references to both CURRVAL and NEXTVAL, then Oracle
increments the sequence and returns the same value for both CURRVAL and NEXTVAL.

Finding the next value of a sequence: Example

This example selects the next value of the employee sequence in the sample schema
hr:

SELECT employees_seq.nextval
FROM DUAL;

Inserting sequence values into a table: Example

This example increments the employee sequence and uses its value for a new
employee inserted into the sample table hr.employees:

INSERT INTO employees
VALUES (employees_seq.-nextval, "John®, "Doe", "jdoe", "555-1212%,
TO_DATE(SYSDATE), "PU_CLERK®, 2500, null, null, 30);

ORACLE 3-5

Chapter 3
Version Query Pseudocolumns

Reusing the current value of a sequence: Example

This example adds a new order with the next order number to the master order table.
It then adds suborders with this number to the detail order table:

INSERT INTO orders (order_id, order_date, customer_id)

VALUES (orders_seq.nextval, TO_DATE(SYSDATE), 106);

INSERT INTO order_items (order_id, line_item id, product_id)

VALUES (orders_seq.currval, 1, 2359);

INSERT INTO order_items (order_id, line_item id, product_id)

VALUES (orders_seq.currval, 2, 3290);

INSERT INTO order_items (order_id, line_item_id, product_id)

VALUES (orders_seq.currval, 3, 2381);

3.3 Version Query Pseudocolumns

The version query pseudocolumns are valid only in Oracle Flashback Version Query,
which is a form of Oracle Flashback Query. The version query pseudocolumns are:

ORACLE

VERSIONS_STARTSCN and VERSIONS_STARTTIME: Starting System Change Number
(SCN) or TIMESTAMP when the row version was created. This pseudocolumn
identifies the time when the data first had the values reflected in the row version.
Use this pseudocolumn to identify the past target time for Oracle Flashback Table
or Oracle Flashback Query. If this pseudocolumn is NULL, then the row version was
created before start.

VERSIONS_ENDSCN and VERSIONS_ENDTIME: SCN or TIMESTAMP when the row version
expired. If the pseudocolumn is NULL, then either the row version was current at the
time of the query or the row corresponds to a DELETE operation.

VERSIONS_XID: Identifier (a RAW number) of the transaction that created the row
version.

VERSIONS_OPERATION: Operation performed by the transaction: 1 for insertion, D for
deletion, or U for update. The version is that of the row that was inserted, deleted,
or updated; that is, the row after an INSERT operation, the row before a DELETE
operation, or the row affected by an UPDATE operation.

For user updates of an index key, Oracle Flashback Version Query might treat an
UPDATE operation as two operations, DELETE plus INSERT, represented as two version
rows with a D followed by an I VERSIONS_OPERATION.

3-6

Chapter 3
COLUMN_VALUE Pseudocolumn

See Also:

» flashback_query_clause (page 19-58) for more information on version
gueries

* Oracle Database Development Guide for more information on using
Oracle Flashback Version Query

* Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules for values of the VERSIONS_OPERATION
pseudocolumn

3.4 COLUMN_VALUE Pseudocolumn

ORACLE

When you refer to an XMLTable construct without the COLUMNS clause, or when you use
the TABLE collection expression to refer to a scalar nested table type, the database
returns a virtual table with a single column. This name of this pseudocolumn is
COLUMN_VALUE

In the context of XMLTable, the value returned is of data type XMLType. For example, the
following two statements are equivalent, and the output for both shows COLUMN_VALUE as
the name of the column being returned:

SELECT *
FROM XMLTABLE("<a>123");

COLUMN_VALUE

<a>123

SELECT COLUMN_VALUE
FROM (XMLTable("<a>123"));

COLUMN_VALUE

<a>123

In the context of a TABLE collection expression, the value returned is the data type of
the collection element. The following statements create the two levels of nested tables
illustrated in Creating a Table: Multilevel Collection Example (page 15-130) to show the
uses of COLUMN_VALUE in this context:

CREATE TYPE phone AS TABLE OF NUMBER;

/

CREATE TYPE phone_list AS TABLE OF phone;
/

The next statement uses COLUMN_VALUE to select from the phone type:

SELECT t.COLUMN_VALUE
FROM TABLE(phone(1,2,3)) t;

COLUMN_VALUE

3-7

Chapter 3
OBJECT _ID Pseudocolumn

2
3

In a nested type, you can use the COLUMN_VALUE pseudocolumn in both the select list
and the TABLE collection expression:

SELECT t.COLUMN_VALUE
FROM TABLE(phone_list(phone(1,2,3))) p, TABLE(p.COLUMN_VALUE) t;

COLUMN_VALUE

The keyword COLUMN_VALUE is also the name that Oracle Database generates for the
scalar value of an inner nested table without a column or attribute name, as shown in
the example that follows. In this context, COLUMN_VALUE is not a pseudocolumn, but an
actual column name.

CREATE TABLE my_customers (
cust_id NUMBER,
name VARCHAR2(25),
phone_numbers phone_list,
credit_limit NUMBER)
NESTED TABLE phone_numbers STORE AS outer_ntab
(NESTED TABLE COLUMN_VALUE STORE AS inner_ntab);

See Also:

XMLTABLE (page 7-424) for information on that function

e table_collection_expression::= (page 18-64) for information on the TABLE
collection expression

e ALTER TABLE examples in Nested Tables: Examples (page 12-170)

* Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules for values of the COLUMN_VALUE pseudocolumn

3.5 OBJECT _ID Pseudocolumn

ORACLE

The 0BJECT_ID pseudocolumn returns the object identifier of a column of an object table
or view. Oracle uses this pseudocolumn as the primary key of an object table.
OBJECT_ID is useful in INSTEAD OF triggers on views and for identifying the ID of a
substitutable row in an object table.

Note:

In earlier releases, this pseudocolumn was called SYS_NC_01D$. That name is
still supported for backward compatibility. However, Oracle recommends that
you use the more intuitive name 0OBJECT _ID.

3-8

Chapter 3
OBJECT_VALUE Pseudocolumn

See Also:

Oracle Database Object-Relational Developer's Guide for examples of the use
of this pseudocolumn

3.6 OBJECT_VALUE Pseudocolumn

The 0BJECT_VALUE pseudocolumn returns system-generated names for the columns of
an object table, XMLType table, object view, or XMLType view. This pseudocolumn is
useful for identifying the value of a substitutable row in an object table and for creating
object views with the WITH OBJECT IDENTIFIER clause.

Note:

In earlier releases, this pseudocolumn was called SYS_NC_ROWINFO$. That name
is still supported for backward compatibility. However, Oracle recommends
that you use the more intuitive name 0BJECT VALUE.

¢ See Also:

* oObject_table (page 15-123) and object_view_clause (page 15-186) for more
information on the use of this pseudocolumn

* Oracle Database Object-Relational Developer's Guide for examples of the
use of this pseudocolumn

3.7 ORA_ROWSCN Pseudocolumn

ORACLE

ORA_ROWSCN reflects the system change-number (SCN) of the most recent change to a
row. This change can be at the level of a block (coarse) or at the level of a row (fine-
grained). The latter is provided by row-level dependency tracking. Refer to CREATE
TABLE ... NOROWDEPENDENCIES | ROWDEPENDENCIES (page 15-117) for more
information on row-level dependency tracking. In the absence of row-level
dependencies, ORA_ROWSCN reflects block-level dependencies.

Whether at the block level or at the row level, the ORA_ROWSCN should not be considered
to be an exact SCN. For example, if a transaction changed row R in a block and
committed at SCN 10, it is not always true that the ORA_ROWSCN for the row would return
10. While a value less than 10 would never be returned, any value greater than or
equal to 10 could be returned. That is, the ORA_ROWSCN of a row is not always
guaranteed to be the exact commit SCN of the transaction that last modified that row.
However, with fine-grained ORA_ROWSCN, if two transactions T1 and T2 modified the
same row R, one after another, and committed, a query on the ORA_ROWSCN of row R
after the commit of T1 will return a value lower than the value returned after the
commit of T2. If a block is queried twice, then it is possible for the value of ORA_ROWSCN
to change between the queries even though rows have not been updated in the time

3-9

Chapter 3
ROWID Pseudocolumn

between the queries. The only guarantee is that the value of ORA_ROWSCN in both queries
is greater than the commit SCN of the transaction that last modified that row.

You cannot use the ORA_ROWSCN pseudocolumn in a query to a view. However, you can
use it to refer to the underlying table when creating a view. You can also use this
pseudocolumn in the WHERE clause of an UPDATE or DELETE statement.

ORA_ROWSCN is not supported for Flashback Query. Instead, use the version query
pseudocolumns, which are provided explicitly for Flashback Query. Refer to the
SELECT ... flashback_query clause (page 19-58) for information on Flashback Query
and Version Query Pseudocolumns (page 3-6) for additional information on those
pseudocolumns.

Restriction on ORA_ROWSCN: This pseudocolumn is not supported for external
tables.

Example

The first statement below uses the ORA_ROWSCN pseudocolumn to get the system change
number of the last operation on the employees table. The second statement uses the
pseudocolumn with the SCN_TO_TIMESTAMP function to determine the timestamp of the
operation:

SELECT ORA_ROWSCN, last_name
FROM employees
WHERE employee_id = 188;

SELECT SCN_TO_TIMESTAMP(ORA_ROWSCN), last_name

FROM employees
WHERE employee_id = 188;

¢ See Also:
SCN_TO_TIMESTAMP (page 7-302)

3.8 ROWID Pseudocolumn

ORACLE

For each row in the database, the ROWID pseudocolumn returns the address of the row.
Oracle Database rowid values contain information necessary to locate a row:

* The data object number of the object
e The data block in the data file in which the row resides
* The position of the row in the data block (first row is 0)

* The data file in which the row resides (first file is 1). The file number is relative to
the tablespace.

Usually, a rowid value uniquely identifies a row in the database. However, rows in
different tables that are stored together in the same cluster can have the same rowid.

Values of the ROWID pseudocolumn have the data type ROWID or UROWID. Refer to Rowid
Data Types (page 2-33) and UROWID Data Type (page 2-34) for more information.

Rowid values have several important uses:

3-10

Chapter 3
ROWNUM Pseudocolumn

* They are the fastest way to access a single row.
* They can show you how the rows in a table are stored.
* They are unique identifiers for rows in a table.

You should not use ROWID as the primary key of a table. If you delete and reinsert a row
with the Import and Export utilities, for example, then its rowid may change. If you
delete a row, then Oracle may reassign its rowid to a new row inserted later.

Although you can use the ROWID pseudocolumn in the SELECT and WHERE clause of a
query, these pseudocolumn values are not actually stored in the database. You cannot
insert, update, or delete a value of the ROWID pseudocolumn.

Example

This statement selects the address of all rows that contain data for employees in
department 20:

SELECT ROWID, last_name
FROM employees
WHERE department_id = 20;

3.9 ROWNUM Pseudocolumn

ORACLE

Note:

e The ROW_NUMBER built-in SQL function provides superior support for ordering
the results of a query. Refer to ROW_NUMBER (page 7-297) for more
information.

e Therow liniting_clause of the SELECT statement provides superior support
for limiting the number of rows returned by a query. Refer to
row_limiting_clause (page 19-82) for more information.

For each row returned by a query, the ROWNUM pseudocolumn returns a number
indicating the order in which Oracle selects the row from a table or set of joined rows.
The first row selected has a ROWNUM of 1, the second has 2, and so on.

You can use ROWNUM to limit the number of rows returned by a query, as in this
example:

SELECT *
FROM employees
WHERE ROWNUM < 11;

If an ORDER BY clause follows ROWNUM in the same query, then the rows will be reordered
by the ORDER BY clause. The results can vary depending on the way the rows are
accessed. For example, if the ORDER BY clause causes Oracle to use an index to access
the data, then Oracle may retrieve the rows in a different order than without the index.
Therefore, the following statement does not necessarily return the same rows as the
preceding example:

SELECT *
FROM employees

3-11

Chapter 3
XMLDATA Pseudocolumn

WHERE ROWNUM < 11
ORDER BY last_name;

If you embed the ORDER BY clause in a subquery and place the ROWNUM condition in the
top-level query, then you can force the ROWNUM condition to be applied after the ordering
of the rows. For example, the following query returns the employees with the 10
smallest employee numbers. This is sometimes referred to as top-N reporting:

SELECT *
FROM (SELECT * FROM employees ORDER BY employee_id)
WHERE ROWNUM < 11;

In the preceding example, the ROWNUM values are those of the top-level SELECT
statement, so they are generated after the rows have already been ordered by
employee_id in the subquery.

Conditions testing for ROWNUM values greater than a positive integer are always false.
For example, this query returns no rows:

SELECT *
FROM employees
WHERE ROWNUM > 1;

The first row fetched is assigned a ROWNUM of 1 and makes the condition false. The
second row to be fetched is now the first row and is also assigned a ROWNUM of 1 and
makes the condition false. All rows subsequently fail to satisfy the condition, so no
rows are returned.

You can also use ROWNUM to assign unique values to each row of a table, as in this
example:

UPDATE my_table
SET columnl = ROWNUM;

Refer to the function ROW_NUMBER (page 7-297) for an alternative method of
assigning unique numbers to rows.

Note:

Using ROWNUM in a query can affect view optimization.

3.10 XMLDATA Pseudocolumn

ORACLE

Oracle stores XMLType data either in LOB or object-relational columns, based on
XMLSchema information and how you specify the storage clause. The XMLDATA
pseudocolumn lets you access the underlying LOB or object relational column to
specify additional storage clause parameters, constraints, indexes, and so forth.

Example

The following statements illustrate the use of this pseudocolumn. Suppose you create
a simple table of XMLType with one CLOB column:

CREATE TABLE xml_lob_tab of XMLTYPE
XMLTYPE STORE AS CLOB;

3-12

Chapter 3
XMLDATA Pseudocolumn

To change the storage characteristics of the underlying LOB column, you can use the
following statement:

ALTER TABLE xml_lob_tab
MODIFY LOB (XMLDATA) (STORAGE (MAXSIZE 2G) CACHE);

Now suppose you have created an XMLSchema-based table like the xwarehouses table
created in Using XML in SQL Statements (page F-8). You could then use the

XMLDATA column to set the properties of the underlying columns, as shown in the
following statement:

ALTER TABLE xwarehouses
ADD (UNIQUE(XMLDATA."Warehouseld™));

ORACLE 3-13

Operators

An operator manipulates data items and returns a result. Syntactically, an operator
appears before or after an operand or between two operands.

This chapter contains these sections:

e About SQL Operators (page 4-1)

* Arithmetic Operators (page 4-2)

e COLLATE Operator (page 4-3)

» Concatenation Operator (page 4-4)

e Hierarchical Query Operators (page 4-5)
e Set Operators (page 4-6)

e Multiset Operators (page 4-6)

e User-Defined Operators (page 4-10)

This chapter discusses nonlogical (non-Boolean) operators. These operators cannot
by themselves serve as the condition of a WHERE or HAVING clause in queries or
subqueries. For information on logical operators, which serve as conditions, refer to
Conditions (page 6-1).

4.1 About SQL Operators

Operators manipulate individual data items called operands or arguments. Operators
are represented by special characters or by keywords. For example, the multiplication
operator is represented by an asterisk (*).

If you have installed Oracle Text, then you can use the SCORE operator, which is part of
that product, in Oracle Text queries. You can also create conditions with the built-in
Text operators, including CONTAINS, CATSEARCH, and MATCHES. For more information on
these Oracle Text elements, refer to Oracle Text Reference.

4.1.1 Unary and Binary Operators

ORACLE

The two general classes of operators are:

° unary: A unary operator operates on only one operand. A unary operator typically
appears with its operand in this format:

operat or operand

* binary: A binary operator operates on two operands. A binary operator appears
with its operands in this format:

operandl operator operand2

Other operators with special formats accept more than two operands. If an operator is
given a null operand, then the result is always null. The only operator that does not
follow this rule is concatenation (|[).

4-1

Chapter 4
Arithmetic Operators

4.1.2 Operator Precedence

Precedence is the order in which Oracle Database evaluates different operators in the
same expression. When evaluating an expression containing multiple operators,
Oracle evaluates operators with higher precedence before evaluating those with lower
precedence. Oracle evaluates operators with equal precedence from left to right within
an expression.

Table 4-1 (page 4-2) lists the levels of precedence among SQL operators from high
to low. Operators listed on the same line have the same precedence.

Table 4-1 SQL Operator Precedence
|

Operator Operation

+, - (as unary operators), PRICR, Identity, negation, location in hierarchy
CONNECT_BY_ROOT, COLLATE

>,/ Multiplication, division

+, - (as binary operators), || Addition, subtraction, concatenation
SQL conditions are evaluated after SQL See "Condition Precedence (page 6-3)"
operators

Precedence Example

In the following expression, multiplication has a higher precedence than addition, so
Oracle first multiplies 2 by 3 and then adds the result to 1.

1+2*3

You can use parentheses in an expression to override operator precedence. Oracle
evaluates expressions inside parentheses before evaluating those outside.

SQL also supports set operators (UNION, UNION ALL, INTERSECT, and MINUS), which
combine sets of rows returned by queries, rather than individual data items. All set
operators have equal precedence.

See Also:

Hierarchical Query Operators (page 4-5) and Hierarchical Queries
(page 9-2) for information on the PRIOR operator, which is used only in
hierarchical queries

4.2 Arithmetic Operators

ORACLE

You can use an arithmetic operator with one or two arguments to negate, add,
subtract, multiply, and divide numeric values. Some of these operators are also used
in datetime and interval arithmetic. The arguments to the operator must resolve to
numeric data types or to any data type that can be implicitly converted to a numeric
data type.

4-2

Chapter 4
COLLATE Operator

Unary arithmetic operators return the same data type as the numeric data type of the
argument. For binary arithmetic operators, Oracle determines the argument with the
highest numeric precedence, implicitly converts the remaining arguments to that data
type, and returns that data type. Table 4-2 (page 4-3) lists arithmetic operators.

See Also:

Table 2-8 (page 2-49) for more information on implicit conversion, Numeric
Precedence (page 2-17) for information on numeric precedence, and
Datetime/Interval Arithmetic (page 2-24)

Table 4-2 Arithmetic Operators
|

Operator Purpose Example

+ - When these denote a positive or SELECT *
negative expression, they are unary FROM order itens
operators. "

WHERE quantity = -1
ORDER BY order_id,
line_item_id, product_id;

SELECT *
FROM employees
WHERE -salary < 0
ORDER BY employee_id;

+- When they add or subtract, they are

. SELECT hire_date
binary operators. -

FROM employees
WHERE SYSDATE - hire_date > 365
ORDER BY hire_date;

*/ Multiply, divide. These are binary

PDATE empl
operators. v e oyees

SET salary = salary * 1.1;

Do not use two consecutive minus signs (--) in arithmetic expressions to indicate
double negation or the subtraction of a negative value. The characters -- are used to
begin comments within SQL statements. You should separate consecutive minus
signs with a space or parentheses. Refer to Comments (page 2-85) for more
information on comments within SQL statements.

4.3 COLLATE Operator

ORACLE

The COLLATE operator determines the collation for an expression. This operator enables
you to override the collation that the database would have derived for the expression
using standard collation derivation rules.

COLLATE is a postfix unary operator. It has the same precedence as other unary
operators, but it is evaluated after all prefix unary operators have been evaluated.

You can apply this operator to expressions of type VARCHAR2, CHAR, LONG, NVARCHAR, or
NCHAR.

4-3

Chapter 4
Concatenation Operator

The COLLATE operator takes one argument, col | ati on_nane, for which you can specify a
named collation or pseudo-collation. If the collation name contains a space, then you
must enclose the name in double quotation marks.

Table 4-3 (page 4-4) describes the COLLATE operator.

Table 4-3 COLLATE Operator
]

Operator

Purpose Example

COLLATE col | ati on_nane Determines the collation

SELECT last_name
FROM employees
ORDER BY last_name COLLATE GENERIC_M;

for an expression

See Also:

e Compound Expressions (page 5-4) for information on using the COLLATE
operator in a compound expression

e Oracle Database Globalization Support Guide for more information on the
COLLATE operator

4.4 Concatenation Operator

ORACLE

The concatenation operator manipulates character strings and CLOB data. Table 4-4
(page 4-4) describes the concatenation operator.

Table 4-4 Concatenation Operator

Operator Purpose Example

Il Concatenates character strings

and CLOB data. SELECT "Name is " || last_name

FROM employees
ORDER BY last_name;

The result of concatenating two character strings is another character string. If both
character strings are of data type CHAR, then the result has data type CHAR and is limited
to 2000 characters. If either string is of data type VARCHAR2, then the result has data
type VARCHAR2 and is limited to 32767 characters if the initialization parameter
MAX_STRING_SIZE = EXTENDED and 4000 characters if MAX_STRING_SIZE = STANDARD. Refer to
Extended Data Types (page 2-32) for more information. If either argument is a CLOB,
the result is a temporary CLOB. Trailing blanks in character strings are preserved by
concatenation, regardless of the data types of the string or CLOB.

On most platforms, the concatenation operator is two solid vertical bars, as shown in
Table 4-4 (page 4-4). However, some IBM platforms use broken vertical bars for this
operator. When moving SQL script files between systems having different character
sets, such as between ASCII and EBCDIC, vertical bars might not be translated into
the vertical bar required by the target Oracle Database environment. Oracle provides
the CONCAT character function as an alternative to the vertical bar operator for cases

4-4

Chapter 4
Hierarchical Query Operators

when it is difficult or impossible to control translation performed by operating system or
network utilities. Use this function in applications that will be moved between
environments with differing character sets.

Although Oracle treats zero-length character strings as nulls, concatenating a zero-
length character string with another operand always results in the other operand, so
null can result only from the concatenation of two null strings. However, this may not
continue to be true in future versions of Oracle Database. To concatenate an
expression that might be null, use the NVL function to explicitly convert the expression
to a zero-length string.

See Also:

e Character Data Types (page 2-9) for more information on the differences
between the CHAR and VARCHAR2 data types

e The functions CONCAT (page 7-80) and NVL (page 7-226)

* Oracle Database SecureFiles and Large Objects Developer's Guide for
more information about CLOBS

e Oracle Database Globalization Support Guide for the collation derivation
rules for the concatenation operator

Concatenation Example

This example creates a table with both CHAR and VARCHAR2 columns, inserts values both
with and without trailing blanks, and then selects these values and concatenates them.
Note that for both CHAR and VARCHAR2 columns, the trailing blanks are preserved.

CREATE TABLE tabl (coll VARCHAR2(6), col2 CHAR(6),
col3 VARCHAR2(6), col4 CHAR(6));

INSERT INTO tabl (coll, col2, col3, col4)
VALUES ("abc®, "def ", "ghi ", "jkI");

SELECT coll || col2 || col3 || col4 "Concatenation™
FROM tabl;

Concatenation

abcdef ghi jkl

4.5 Hierarchical Query Operators

Two operators, PRIOR and CONNECT_BY_ROOT, are valid only in hierarchical queries.

4.5.1 PRIOR

ORACLE

In a hierarchical query, one expression in the CONNECT BY condi ti on must be qualified by
the PRIOR operator. If the CONNECT BY condi ti on is compound, then only one condition
requires the PRIOR operator, although you can have multiple PRIOR conditions. PRIOR
evaluates the immediately following expression for the parent row of the current row in
a hierarchical query.

4-5

Chapter 4
Set Operators

PRIOR is most commonly used when comparing column values with the equality
operator. (The PRIOR keyword can be on either side of the operator.) PRIOR causes
Oracle to use the value of the parent row in the column. Operators other than the
equal sign (=) are theoretically possible in CONNECT BY clauses. However, the conditions
created by these other operators can result in an infinite loop through the possible
combinations. In this case Oracle detects the loop at run time and returns an error.
Refer to Hierarchical Queries (page 9-2) for more information on this operator,
including examples.

4.5.2 CONNECT BY ROOT

CONNECT_BY_ROOT is a unary operator that is valid only in hierarchical queries. When you
qualify a column with this operator, Oracle returns the column value using data from
the root row. This operator extends the functionality of the CONNECT BY [PRIOR] condition
of hierarchical queries.

Restriction on CONNECT_BY_ROOT

You cannot specify this operator in the START WITH condition or the CONNECT BY condition.

¢ See Also:
CONNECT_BY_ROOT Examples (page 9-7)

4.6 Set Operators

Set operators combine the results of two component queries into a single result.
Queries containing set operators are called compound queries. Table 4-5 (page 4-6)
lists SQL set operators. They are fully described, including examples and restrictions
on these operators, in The UNION [ALL], INTERSECT, MINUS Operators

(page 9-8).

Table 4-5 Set Operators

Operator Returns

UNITON All distinct rows selected by either query

UNION ALL All rows selected by either query, including all duplicates
INTERSECT All distinct rows selected by both queries

MINUS All distinct rows selected by the first query but not the second

4.7 Multiset Operators

ORACLE

Multiset operators combine the results of two nested tables into a single nested table.

The examples related to multiset operators require that two nested tables be created
and loaded with data as follows:

First, make a copy of the oe.customers table called customers_demo:

4-6

Chapter 4
Multiset Operators

CREATE TABLE customers_demo AS
SELECT * FROM customers;

Next, create a table type called cust_address_tab_typ. This type will be used when
creating the nested table columns.

CREATE TYPE cust_address_tab_typ AS
TABLE OF cust_address_typ;
/

Now, create two nested table columns in the customers_demo table:

ALTER TABLE customers_demo
ADD (cust_address_ntab cust_address_tab_typ,
cust_address2_ntab cust_address_tab_typ)
NESTED TABLE cust_address_ntab STORE AS cust_address_ntab_store
NESTED TABLE cust_address2_ntab STORE AS cust_address2_ntab_store;

Finally, load data into the two new nested table columns using data from the
cust_address column of the oe.customers table:

UPDATE customers_demo cd
SET cust_address _ntab =
CAST(MULTISET(SELECT cust_address
FROM customers c
WHERE c.customer_id =
cd.customer_id) as cust_address_tab_typ);

UPDATE customers_demo cd
SET cust_address2 ntab =
CAST(MULTISET(SELECT cust_address
FROM customers c
WHERE c.customer_id =
cd.customer_id) as cust_address_tab_typ);

4.7.1 MULTISET EXCEPT

ORACLE

MULTISET EXCEPT takes as arguments two nested tables and returns a nested table
whose elements are in the first nested table but not in the second nested table. The
two input nested tables must be of the same type, and the returned nested table is of
the same type as well.

ALL

l DISTINCT '
—><nested_table1)—>| MULTISET |->| EXCEPT } 5 nested_table2)>

e The ALL keyword instructs Oracle to return all elements in nested_t abl el that are
not in nest ed_t abl e2. For example, if a particular element occurs mtimes in
nested_tabl el and n times in nest ed_t abl e2, then the result will have (m n)
occurrences of the element if m >n and 0 occurrences if nxk=n. ALL is the default.

e The DISTINCT keyword instructs Oracle to eliminate any element in nest ed_t abl el
which is also in nest ed_t abl €2, regardless of the number of occurrences.

* The element types of the nested tables must be comparable. Refer to Comparison
Conditions (page 6-4) for information on the comparability of nonscalar types.

4-7

Chapter 4
Multiset Operators

Example

The following example compares two nested tables and returns a nested table of
those elements found in the first nested table but not in the second nested table:

SELECT customer_id, cust_address_ntab
MULTISET EXCEPT DISTINCT cust_address2_ntab multiset_except
FROM customers_demo
ORDER BY customer_id;

CUSTOMER_ID MULTISET_EXCEPT(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID)

101 CUST_ADDRESS_TAB_TYP()
102 CUST_ADDRESS_TAB_TYP()
103 CUST_ADDRESS_TAB_TYP()
104 CUST_ADDRESS_TAB_TYP()
105 CUST_ADDRESS_TAB_TYP()

The preceding example requires the table customers_demo and two nested table
columns containing data. Refer to Multiset Operators (page 4-6) to create this table
and nested table columns.

4.7.2 MULTISET INTERSECT

MULTISET INTERSECT takes as arguments two nested tables and returns a nested table
whose values are common in the two input nested tables. The two input nested tables
must be of the same type, and the returned nested table is of the same type as well.

ALL

e

—>(nested,tab|e1)->| MULTISET |->| INTERSECT }

(nested_table2 }»

* The ALL keyword instructs Oracle to return all common occurrences of elements
that are in the two input nested tables, including duplicate common values and
duplicate common NULL occurrences. For example, if a particular value occurs m
times in nest ed_t abl e1 and n times in nest ed_t abl e2, then the result would contain
the element min(m,n) times. ALL is the default.

e The DISTINCT keyword instructs Oracle to eliminate duplicates from the returned
nested table, including duplicates of NULL, if they exist.

e The element types of the nested tables must be comparable. Refer to Comparison
Conditions (page 6-4) for information on the comparability of nonscalar types.

Example

The following example compares two nested tables and returns a nested table of
those elements found in both input nested tables:

SELECT customer_id, cust_address_ntab
MULTISET INTERSECT DISTINCT cust_address2_ntab multiset_intersect
FROM customers_demo
ORDER BY customer_id;

CUSTOMER_ID MULTISET_INTERSECT(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID

101 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP(*514 W Superior St*, "46901%, *Kokomo®, "IN*, *US®))

ORACLE 4-8

Chapter 4
Multiset Operators

102 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP(*2515 Bloyd Ave®, *46218%, "Indianapolis®, "IN*, *US%))
103 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP(*8768 N State Rd 37%, *47404%, *Bloomington®, "IN*, *US®))
104 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP("6445 Bay Harbor Ln®, *46254%, "Indianapolis®, "IN", "US"))
105 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP("4019 W 3Rd St*, "47404", "Bloomington®, "IN", "US"))

The preceding example requires the table customers_demo and two nested table
columns containing data. Refer to Multiset Operators (page 4-6) to create this table
and nested table columns.

4.7.3 MULTISET UNION

MULTISET UNION takes as arguments two nested tables and returns a nested table
whose values are those of the two input nested tables. The two input nested tables
must be of the same type, and the returned nested table is of the same type as well.

ALL

)

—><nested_table1)—>| MULTISET |->| UNION }

(nested_table2)>

e The ALL keyword instructs Oracle to return all elements that are in the two input
nested tables, including duplicate values and duplicate NULL occurrences. This is
the default.

e The DISTINCT keyword instructs Oracle to eliminate duplicates from the returned
nested table, including duplicates of NULL, if they exist.

* The element types of the nested tables must be comparable. Refer to Comparison
Conditions (page 6-4) for information on the comparability of nonscalar types.

Example

The following example compares two nested tables and returns a nested table of
elements from both input nested tables:

SELECT customer_id, cust_address_ntab
MULTISET UNION cust_address2_ntab multiset_union
FROM customers_demo
ORDER BY customer_id;

CUSTOMER_ID MULTISET_UNION(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID)

101 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP(*514 W Superior St", "46901%, "Kokomo®, "IN*, "US'),
CUST_ADDRESS_TYP("514 W Superior St*, *46901°, "Kokomo®, "IN*, *US"))

102 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP(*2515 Bloyd Ave®, "46218", *Indianapolis®, "IN®, *US"),
CUST_ADDRESS_TYP("2515 Bloyd Ave', *46218", *Indianapolis®, "IN*,"US"))

103 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP(*8768 N State Rd 37", "47404*, "Bloomington®, "IN*, *US®),
CUST_ADDRESS_TYP("8768 N State Rd 37*, "47404", *Bloomington®, "IN", *US"))

104 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP(*6445 Bay Harbor Ln", *46254*, "Indianapolis®, "IN*, *US"),
CUST_ADDRESS_TYP("6445 Bay Harbor Ln*, "46254*, *Indianapolis®, "IN", *US"))

105 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP(*4019 W 3Rd St*, "47404*, *Bloomington®, "IN®, *US"),
CUST_ADDRESS_TYP("4019 W 3Rd St*, *47404", "Bloomington®, "IN*, *US"))

The preceding example requires the table customers_demo and two nested table
columns containing data. Refer to Multiset Operators (page 4-6) to create this table
and nested table columns.

ORACLE 4-9

Chapter 4
User-Defined Operators

4.8 User-Defined Operators

Like built-in operators, user-defined operators take a set of operands as input and
return a result. However, you create them with the CREATE OPERATOR statement, and they
are identified by user-defined names. They reside in the same namespace as tables,
views, types, and standalone functions.

After you have defined a new operator, you can use it in SQL statements like any
other built-in operator. For example, you can use user-defined operators in the select
list of a SELECT statement, the condition of a WHERE clause, or in ORDER BY clauses and
GROUP BY clauses. However, you must have EXECUTE privilege on the operator to do so,
because it is a user-defined object.

See Also:

CREATE OPERATOR (page 14-58) for an example of creating an operator
and Oracle Database Data Cartridge Developer's Guide for more information
on user-defined operators

ORACLE 4-10

EXxpressions

This chapter describes how to combine values, operators, and functions into
expressions.

This chapter includes these sections:

e About SQL Expressions (page 5-1)

e Simple Expressions (page 5-3)

e Compound Expressions (page 5-4)

e Calculated Measure Expressions (page 5-5)
e CASE Expressions (page 5-18)

e Column Expressions (page 5-20)

* CURSOR Expressions (page 5-20)

« Datetime Expressions (page 5-22)

* Function Expressions (page 5-23)

* Interval Expressions (page 5-24)

e JSON Object Access Expressions (page 5-25)
e Model Expressions (page 5-28)

* Object Access Expressions (page 5-30)

* Placeholder Expressions (page 5-30)

e Scalar Subquery Expressions (page 5-31)

* Type Constructor Expressions (page 5-31)

* Expression Lists (page 5-33)

5.1 About SQL Expressions

ORACLE

An expression is a combination of one or more values, operators, and SQL functions
that evaluates to a value. An expression generally assumes the data type of its
components.

This simple expression evaluates to 4 and has data type NUMBER (the same data type
as its components):

2*2
The following expression is an example of a more complex expression that uses both

functions and operators. The expression adds seven days to the current date,
removes the time component from the sum, and converts the result to CHAR data type:

TO_CHAR(TRUNC(SYSDATE+7))

You can use expressions in:

5-1

ORACLE

Chapter 5
About SQL Expressions

* The select list of the SELECT statement

* A condition of the WHERE clause and HAVING clause
e The CONNECT BY, START WITH, and ORDER BY clauses
e The VALUES clause of the INSERT statement

e The SET clause of the UPDATE statement

For example, you could use an expression in place of the quoted string "Smith" in this
UPDATE statement SET clause:

SET last_name = "Smith";

This SET clause has the expression INITCAP(last_name) instead of the quoted string
‘Smith":

SET last_name = INITCAP(last_name);

Expressions have several forms, as shown in the following syntax:

expr::=

simple_expression
compound_expression
calc_meas_expression
case_expression
Ccursor_expression
datetime_expression
function_expression
interval_expression

—(JSON_object_access_expr)—

model_expression

—Cobject_access_expression)—

—Cscalar_subquery_expression)—

—(type_constructor_expression)—

it

|

variable_expression

|

Oracle Database does not accept all forms of expressions in all parts of all SQL
statements. Refer to the section devoted to a particular SQL statement in this book for
information on restrictions on the expressions in that statement.

You must use appropriate expression notation whenever expr appears in conditions,
SQL functions, or SQL statements in other parts of this reference. The sections that
follow describe and provide examples of the various forms of expressions.

5-2

Chapter 5
Simple Expressions

5.2 Simple Expressions

ORACLE

A simple expression specifies a column, pseudocolumn, constant, sequence number,
or null.

simple_expression::=

query_name

€zDYe) h
schema
‘ (view)

\J .
materialized view
t_alias column

—| ROWNUM
—(string)
>-(number) —

CURRVAL
O
\| NULL

In addition to the schema of a user, schema can also be "PUBLIC" (double quotation
marks required), in which case it must qualify a public synonym for a table, view, or
materialized view. Qualifying a public synonym with "PUBLIC" is supported only in data
manipulation language (DML) statements, not data definition language (DDL)
statements.

You can specify ROWID only with a table, not with a view or materialized view. NCHAR and
NVARCHAR2 are not valid pseudocolumn data types.

¢ See Also:

Pseudocolumns (page 3-1) for more information on pseudocolumns and
subquery_factoring_clause (page 19-53) for information on query_name

Some valid simple expressions are:

employees. last_name

"this is a text string®

10

N"this is an NCHAR string®

5-3

Chapter 5
Compound Expressions

5.3 Compound Expressions

ORACLE

A compound expression specifies a combination of other expressions.

compound_expression::=

O,
- expr)

ClleLTe

COLLATE |—>Ccollation_name>/

You can use any built-in function as an expression (Function Expressions

(page 5-23)). However, in a compound expression, some combinations of functions
are inappropriate and are rejected. For example, the LENGTH function is inappropriate
within an aggregate function.

The PRIOR operator is used in CONNECT BY clauses of hierarchical queries.

The COLLATE operator determines the collation for an expression. This operator
overrides the collation that the database would have derived for the expression using
standard collation derivation rules.

See Also:

e Operator Precedence (page 4-2)
e Hierarchical Queries (page 9-2)
e COLLATE Operator (page 4-3)

Some valid compound expressions are:

("CLARK™ || "SMITHT)
LENGTH("MOOSE™) * 57

SQRT(144) + 72
my_fun(TO_CHAR(sysdate, "DD-MMM-YY*))
name COLLATE BINARY_CI

5-4

Chapter 5
Calculated Measure Expressions

5.4 Calculated Measure Expressions

ORACLE

A calculated measure expression defines a calculated measure in an analytic view.
You use a calculated measure expression as the cal c_meas_expr essi on parameter in a
cal c_measure_cl ause in a CREATE ANALYTIC VIEW statement.

Q Tip:

You can view and run SQL scripts that create analytic views with calculated
measures at the Oracle Live SQL website at https://livesgl.oracle.com/apex/
livesgl/file/index.html. The website has scripts and tutorials that demonstrate
the creation and use of analytic views.

Syntax

calc_meas_expression::=

av_meas_expression

;

av_simple_expression

—CsingIe_row_function_expression)—

——{ case_expression >
compound_expression

datetime_expression

i

interval_expression

Semantics
calc_meas_expression

The calculated measure expressions that have syntax specific to analytic views are
described in the following topics:

* Analytic View Measure Expressions (page 5-6)
* Analytic View Simple Expressions (page 5-15)
* Single Row Function Expression (page 5-16)

For the other types of permissible expressions for a calculated measure, see the
following topics:

e CASE Expressions (page 5-18)
e Compound Expressions (page 5-4)
» Datetime Expressions (page 5-22)

* Interval Expressions (page 5-24)

5-5

https://livesql.oracle.com/apex/livesql/file/index.html
https://livesql.oracle.com/apex/livesql/file/index.html

Chapter 5
Calculated Measure Expressions

See Also:
CREATE ANALYTIC VIEW (page 13-6)

5.4.1 Analytic View Measure Expressions

An analytic view measure expression is based on a measure in an analytic view.

Q Tip:

You can view and run SQL scripts that create analytic views with calculated
measures at the Oracle Live SQL website at https://livesqgl.oracle.com/apex/
livesql/file/index.html. The website has scripts and tutorials that demonstrate
the creation and use of analytic views.

Syntax

av_meas_expression: =

Y1
Gy

|

lead_lag_expression::=

—>(Iead_|ag_function_name)»@{calc_meas_expression)»@% OVER P@»(Iead_lag_clause)@»

lead_lag_function_name::=

LAG

—| LAG_DIF_PERCENT |—

\| LEAD_DIFF_PERCENT |/

ORACLE 5-6

https://livesql.oracle.com/apex/livesql/file/index.html
https://livesql.oracle.com/apex/livesql/file/index.html

Chapter 5
Calculated Measure Expressions

lead_lag_clause::=

_>| HIERARCHY |—>(hierarchy7ref>e| OFFSET Koﬁsetﬁexpr)»

| BEGINNING I
END

ﬁ POSITION |_>| FROM
ACROSS H ANCESTOR |->| AT H LEVEL |->(|eve|_ref)

hierarchy_ref::=

attr_dim_alias ‘

(hier_alias)»

window_expression::=

ﬁ(aggregate_function)—>| OVER P@{window_clause)a@»

window_clause::=

preceding_boundary
—{ HIERARCHY | hierarchy_ref)5 BETWEEN H

following_boundary

PARENT |

|
ANCESTOR |->| AT |->| LEVEL Mevel_name}J ‘

WITHIN

preceding_boundary ::=

CURRENT |->| MEMBER
PRECEDING
l FOLLOWING '

UNBOUNDED H FOLLOWING

UNBOUNDED |—>| PRECEDING

AND offset_expr

offsetfexpr)—>| PRECEDING

ORACLE 5.7

ORACLE

Chapter 5
Calculated Measure Expressions

following_boundary::=

CURRENT |_>| MEMBER oﬁsetﬁexpr>—>| FOLLOWING
AND
offset,expr)->| FOLLOWING UNBOUNDED |_>| FOLLOWING

calc_meas_order_by clause::=

ASC

= =

—(calc_meas_expression }

share_of _expression::=

SHARE_OF a caIc_meas_expression){share_clause)e@»

share clause::=

PARENT

—>| HIERARCHY |—>Chierarchy_ref LEVEL |{|eve|_ref

MEMBER |—>Cmember_expression

level _member literal::=

level_ref

| pos_member_keys .
named_member_keys

pos_member_keys::=

named_member_keys::=

I
N\

‘ “ ‘ attr_name a member_key_expr ‘ » ‘

5-8

ORACLE

hier_navigation_expression::=

hier_ancestor_expression

hier_parent_expression

hier_lead_lag_expression

hier_ancestor_expression::=

—>| HIER_ANCESTOR @{member_expressionH AT

level_ref

member_expression::=

level_member_literal

hier_navigation_expression)—

CURRENT |->| MEMBER |——>

hier_parent_expression::=

—>| HIER_PARENT F@{member_expression)»@»

hier_lead_lag_expression::=

HIER_LEAD
H hier_lead_lag_clause
HIER_LAG

hier_lead_lag_clause::=

{member_expressionH OFFSET |a<offset_expr>—>

DEPTH |{depth_expression

Chapter 5

Calculated Measure Expressions

BEGINNING

ACROSS |{ ANCESTOR LEVEL (level_ref)

5-9

ORACLE

Chapter 5
Calculated Measure Expressions

qdr_expression::=

—{ QUALIFY F@{calc_meas_expression)a@{qualifier}@

qualifier::=

hierarchy_ref ° member_expression

Semantics

avfmeasfexpression

An expression that performs hierarchical navigation to locate related measure values.

lead_lag_expression

An expression that specifies a lead or lag operation that locates a related measure
value by navigating forward or backward by some number of members within a
hierarchy.

The cal c_meas_expr essi on parameter is evaluated in the new context created by the

| ead_| ag_expressi on. This context has the same members as the outer context, except
that the member of the specified hierarchy is changed to the related member specified
by the lead or lag operation. The lead or lag function is run over the hierarchy
members specified by the | ead_| ag_cl ause parameter.

lead_lag function_name
The lead or lag function may be one of the following:

e LAG returns the measure value of an earlier member.

* LAG_DIFF returns the difference between the measure value of the current member
and the measure value of an earlier member.

e LAG_DIFF_PERCENT returns the percent difference between the measure value of the
current member and the measure value of an earlier member.

e LEAD returns the measure value of a later member.

e LEAD DIFF returns the difference between the measure value of the current member
and the measure value of a later member.

e LEAD_DIFF_PERCENT returns the percent difference between the measure value of the
current member and the measure value of a later member.

lead_lag_clause

Specifies the hierarchy to evaluate and an offset value. The parameters of the
| ead_| ag_cl ause are the following:

e HIERARCHY hi erarchy_ref specifies the name of a hierarchy in the analytic view.

e OFFSET of f set _expr specifies a cal c_neas_expr essi on that resolves to a number. The
number specifies how many members to move either forward or backward from

5-10

Chapter 5
Calculated Measure Expressions

the current member. The ordering of members within a level is determined by the
definition of the attribute dimension used by the hierarchy.

* WITHIN LEVEL specifies locating the related member by moving forward or backward
by the offset number of members within the members that have the same level
depth as the current member. The ordering of members within the level is
determined by the definition of the attribute dimension used by the hierarchy.

The WITHIN LEVEL operation is the default if neither the WITHIN LEVEL nor the ACROSS
ANCESTOR AT LEVEL keywords are specified.

e WITHIN PARENT specifies locating the related member by moving forward or
backward by the offset number of members within the members that have the
same parent as the current member.

* ACROSS ANCESTOR AT LEVEL | evel _ref specifies locating the related member by
navigating up to the ancestor (or to the member itself if no ancestor exists) of the
current member at the level specified by | evel _ref, and noting the position of each
ancestor member (including the member itself) within its parent. The | evel _ref
parameter is the name of a level in the specified hierarchy.

Once the ancestor member is found, navigation moves either forward or backward
the offset number of members within the members that have the same depth as
the ancestor member. After locating the related ancestor, navigation proceeds
back down the hierarchy from this member, matching the position within the parent
as recorded on the way up (in reverse order). The position within the parent is
either an offset from the first child or the last child depending on whether POSITION
FROM BEGINNING or POSITION FROM END is specified. The default value is POSITION FROM
BEGINNING. The ordering of members within the level is determined by the definition
of the attribute dimension used by the hierarchy.

window_expression

A wi ndow_expr essi on selects the set of members that are in the specified range starting
from the current member and that are at the same depth as the current member. You
can further restrict the selection of members by specifying a hierarchical relationship
using a WITHIN phrase. Aggregation is then performed over the selected measure
values to produce a single result for the expression.

The parameters for a wi ndow_expr essi on are the following:

* aggregate_function is any existing SQL aggregate function except COLLECT,
GROUP_ID, GROUPING, GROUPING_ID, SYS XMLAGG, XMLAGG, and any multi-argument
function. A user defined aggregate function is also allowed. The arguments to the
aggregate function are cal c_neas_expr essi on expressions. These expressions are
evaluated using the outer context, with the member of the specified hierarchy
changed to each member in the related range. Therefore, each expression
argument is evaluated once per related member. The results are then aggregated
using the aggregat e_f uncti on.

e OVER (wi ndow_cl ause) specifies the hierarchy to use and the boundaries of the
window to consider.

See Also:

Aggregate Functions (page 7-12)

ORACLE 5-11

ORACLE

Chapter 5
Calculated Measure Expressions

window_clause

The wi ndow_cl ause parameter selects a range of members related to the current
member. The range is between the members specified by the precedi ng_boundary or
fol | owi ng_boundary parameters. The range is always computed over members at the
same level as the current member.

The parameters for a wi ndow_cl ause are the following:

* HIERARCHY hi erarchy_ref specifies the name of the hierarchy in the analytic view.

e BETWEEN precedi ng_boundary or fol | owi ng_boundary defines the set of members to
relate to the current member.

* WITHIN LEVEL selects the related members by applying the boundary clause to all
members of the current level. This is the default when the WITHIN keyword is not
specified.

e WITHIN PARENT selects the related members by applying the boundary clause to all
members that share a parent with the current member.

e WITHIN ANCESTOR AT LEVEL selects the related members by applying the boundary
clause to all members at the current depth that share an ancestor (or is the
member itself) at the specified level with the current member. The value of the
window expression is NULL if the current member is above the specified level. If the
level is not in the specified hierarchy, then an error occurs.

preceding_boundary

The precedi ng_boundary parameter defines a range of members from the specified
number of members backward in the level from the current member and forward to the
specified end of the boundary. The following parameters specify the range:

e UNBOUNDED PRECEDING begins the range at the first member in the level.

e of fset_expr PRECEDING begins the range at the of f set _expr number of members
backward from the current member. The of f set _expr expression is a
cal c_neas_expr essi on that resolves to a number. If the offset number is greater
than the number of members from the current member to the first member in the
level, than the first member is used as the start of the range.

e CURRENT MEMBER ends the range at the current member.

o of fset_expr PRECEDING ends the range at the member that is of f set _expr backward
from the current member.

» of fset_expr FOLLOWING ends the range at the member that is of f set _expr forward
from the current member.

e UNBOUNDED FOLLOWING ends the range at the last member in the level.

following_boundary

The f ol | owi ng_boundary parameter defines a range of members from the specified
number of members from the current member forward to the specified end of the
range. The following parameters specify the range:

* CURRENT MEMBER begins the range at the current member.

» of fset_expr FOLLOWING begins the range at the member that is of f set _expr forward
from the c